
formulas Documentation
Release 0.1.4

Vincenzo Arcidiacono

Oct 19, 2018

Table of Contents

1 What is formulas? 3

2 Installation 5
2.1 Install extras . 5

2.1.1 What is formulas? . 5
2.1.2 Installation . 5

2.1.2.1 Install extras . 6
2.1.3 Basic Examples . 6

2.1.3.1 Parsing formula . 6
2.1.3.2 Excel workbook . 8
2.1.3.3 Custom functions . 10

2.1.4 Next moves . 11
2.1.5 Contributing to formulas . 11

2.1.5.1 Clone the repository . 11
2.1.5.2 How to implement a new function . 11
2.1.5.3 How to open a pull request . 12

2.1.6 Donate . 12
2.1.7 API Reference . 12

2.1.7.1 parser . 13
2.1.7.2 builder . 14
2.1.7.3 errors . 17
2.1.7.4 tokens . 18
2.1.7.5 functions . 46
2.1.7.6 ranges . 252
2.1.7.7 cell . 253
2.1.7.8 excel . 256

2.1.8 Changelog . 258
2.1.8.1 v0.1.4 (2018-10-19) . 258
2.1.8.2 v0.1.3 (2018-10-09) . 258
2.1.8.3 v0.1.2 (2018-09-12) . 259
2.1.8.4 v0.1.1 (2018-09-11) . 259
2.1.8.5 v0.1.0 (2018-07-20) . 259
2.1.8.6 v0.0.10 (2018-06-05) . 260
2.1.8.7 v0.0.9 (2018-05-28) . 260
2.1.8.8 v0.0.8 (2018-05-23) . 260
2.1.8.9 v0.0.7 (2017-07-20) . 262

i

2.1.8.10 v0.0.6 (2017-05-31) . 263
2.1.8.11 v0.0.5 (2017-05-04) . 263
2.1.8.12 v0.0.4 (2017-02-10) . 263
2.1.8.13 v0.0.3 (2017-02-09) . 263
2.1.8.14 v0.0.2 (2017-02-08) . 263

3 Indices and tables 265

Python Module Index 267

ii

formulas Documentation, Release 0.1.4

2018-10-19 11:00:00

https://github.com/vinci1it2000/formulas

https://pypi.org/project/formulas/

http://formulas.readthedocs.io/

https://github.com/vinci1it2000/formulas/wiki/

http://github.com/vinci1it2000/formulas/releases/

https://donorbox.org/formulas

excel, formulas, interpreter, compiler, dispatch

• Vincenzo Arcidiacono <vinci1it2000@gmail.com>

EUPL 1.1+

Table of Contents 1

https://pypi.python.org/pypi/formulas/
https://travis-ci.org/vinci1it2000/formulas
https://ci.appveyor.com/project/vinci1it2000/formulas
https://coveralls.io/github/vinci1it2000/formulas?branch=master
https://formulas.readthedocs.io/en/stable/?badge=stable
https://requires.io/github/vinci1it2000/formulas/requirements/?branch=master
https://github.com/vinci1it2000/formulas/issues
https://pypi.python.org/pypi/formulas/
https://github.com/vinci1it2000/formulas
https://pypi.org/project/formulas/
http://formulas.readthedocs.io/
https://github.com/vinci1it2000/formulas/wiki/
http://github.com/vinci1it2000/formulas/releases/
https://donorbox.org/formulas
mailto:vinci1it2000@gmail.com
https://joinup.ec.europa.eu/software/page/eupl

formulas Documentation, Release 0.1.4

2 Table of Contents

CHAPTER 1

What is formulas?

formulas implements an interpreter for Excel formulas, which parses and compile Excel formulas expressions.

Moreover, it compiles Excel workbooks to python and executes without using the Excel COM server. Hence, Excel is
not needed.

3

formulas Documentation, Release 0.1.4

4 Chapter 1. What is formulas?

CHAPTER 2

Installation

To install it use (with root privileges):

$ pip install formulas

Or download the last git version and use (with root privileges):

$ python setup.py install

2.1 Install extras

Some additional functionality is enabled installing the following extras:

• excel: enables to compile Excel workbooks to python and execute using: ExcelModel.

• plot: enables to plot the formula ast and the Excel model.

To install formulas and all extras, do:

$ pip install formulas[all]

2.1.1 What is formulas?

formulas implements an interpreter for Excel formulas, which parses and compile Excel formulas expressions.

Moreover, it compiles Excel workbooks to python and executes without using the Excel COM server. Hence, Excel is
not needed.

2.1.2 Installation

To install it use (with root privileges):

5

formulas Documentation, Release 0.1.4

$ pip install formulas

Or download the last git version and use (with root privileges):

$ python setup.py install

2.1.2.1 Install extras

Some additional functionality is enabled installing the following extras:

• excel: enables to compile Excel workbooks to python and execute using: ExcelModel.

• plot: enables to plot the formula ast and the Excel model.

To install formulas and all extras, do:

$ pip install formulas[all]

2.1.3 Basic Examples

The following sections will show how to:

• parse a Excel formulas;

• load, compile, and execute a Excel workbook;

• extract a sub-model from a Excel workbook;

• add a custom function.

2.1.3.1 Parsing formula

An example how to parse and execute an Excel formula is the following:

>>> import formulas
>>> func = formulas.Parser().ast('=(1 + 1) + B3 / A2')[1].compile()

To visualize formula model and get the input order you can do the following:

>>> list(func.inputs)
['A2', 'B3']
>>> func.plot(view=False) # Set view=True to plot in the default browser.
SiteMap([(=((1 + 1) + (B3 / A2)), SiteMap())])

6 Chapter 2. Installation

formulas Documentation, Release 0.1.4

dmap

((1 + 1) + (B3 / A2))
filter 0 bypass

end

((1 + 1) + (B3 / A2)) --> end
out_id 0

(1 + 1)
default OperatorArray(2.0, dtype=object)

+<0>

(B3 / A2)

/

A2 B3

startstart --> A2
inp_id 0

start --> B3
inp_id 1

Finally to execute the formula and plot the workflow:

>>> func(1, 5)
OperatorArray(7.0, dtype=object)
>>> func.plot(workflow=True, view=False) # Set view=True to plot in the
→˓default browser.
SiteMap([(=((1 + 1) + (B3 / A2)), SiteMap())])

2.1. Install extras 7

formulas Documentation, Release 0.1.4

workflow

((1 + 1) + (B3 / A2))
input_filter 0 ((1 + 1) + (B3 / A2))-input_filter 0

output_filter 0 ((1 + 1) + (B3 / A2))-output_filter 0
distance 4.0

(1 + 1)
default OperatorArray(2.0, dtype=object)

distance 0.0

+<0>
distance 3.0

started 2018-10-19T09:25:12.783950
duration 0:00:00.000729

(B3 / A2)
distance 2.0

/
distance 1.0

started 2018-10-19T09:25:12.783725
duration 0:00:00.000121

A2
distance 0.0

B3
distance 0.0

start

2.1.3.2 Excel workbook

An example how to load, calculate, and write an Excel workbook is the following:

>>> import formulas
>>> fpath = 'file.xlsx'
>>> xl_model = formulas.ExcelModel().loads(fpath).finish()
>>> xl_model.calculate()
Solution(...)
>>> xl_model.write()
{'EXCEL.XLSX': {Book: <openpyxl.workbook.workbook.Workbook ...>}}

Tip: If you have or could have circular references, add circular=True to finish method.

To plot the dependency graph that depict relationships between Excel cells:

8 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> dsp = xl_model.dsp
>>> dsp.plot(view=False) # Set view=True to plot in the default browser.
SiteMap([(Dispatcher ..., SiteMap())])

dmap

'[EXCEL.XLSX]DATA'!A1
default inputs
filter 0 format_output

'[EXCEL.XLSX]DATA'!A2
default 2
filter 0 format_output

=('[EXCEL.XLSX]DATA'!A2 + '[EXCEL.XLSX]DATA'!A3)

=('[EXCEL.XLSX]DATA'!C2 * '[EXCEL.XLSX]DATA'!A2)

'[EXCEL.XLSX]DATA'!A3
default 6
filter 0 format_output

='[EXCEL.XLSX]DATA'!A3:A4

=('[EXCEL.XLSX]DATA'!B2 - '[EXCEL.XLSX]DATA'!A3)

'[EXCEL.XLSX]DATA'!A3:A4
filter 0 format_output

=MAX('[EXCEL.XLSX]DATA'!A3:A4, '[EXCEL.XLSX]DATA'!B2)

'[EXCEL.XLSX]DATA'!A4
default 5
filter 0 format_output

'[EXCEL.XLSX]DATA'!B1
default Intermediate
filter 0 format_output

'[EXCEL.XLSX]DATA'!B2
filter 0 format_output

=('[EXCEL.XLSX]DATA'!B2 / '[EXCEL.XLSX]DATA'!B3)

'[EXCEL.XLSX]DATA'!B3
filter 0 format_output

=('[EXCEL.XLSX]DATA'!B3 ^ '[EXCEL.XLSX]DATA'!C2)

'[EXCEL.XLSX]DATA'!B4
filter 0 format_output

'[EXCEL.XLSX]DATA'!C1
default outputs
filter 0 format_output

'[EXCEL.XLSX]DATA'!C2
filter 0 format_output

'[EXCEL.XLSX]DATA'!C3
filter 0 format_output

'[EXCEL.XLSX]DATA'!C4
filter 0 format_output

To compile, execute, and plot a Excel sub-model you can do the following:

>>> inputs = ["'[EXCEL.XLSX]DATA'!A2"] # input cells
>>> outputs = ["'[EXCEL.XLSX]DATA'!C2"] # output cells
>>> func = xl_model.compile(inputs, outputs)
>>> func(2).value[0,0]
4.0
>>> func.plot(view=False) # Set view=True to plot in the default browser.
SiteMap([(Dispatcher ..., SiteMap())])

2.1. Install extras 9

formulas Documentation, Release 0.1.4

dmap

'[EXCEL.XLSX]DATA'!A2
filter 0 format_output

=('[EXCEL.XLSX]DATA'!A2 + '[EXCEL.XLSX]DATA'!A3)

'[EXCEL.XLSX]DATA'!A3
default array([[6]], dtype=object)
filter 0 format_output

=('[EXCEL.XLSX]DATA'!B2 - '[EXCEL.XLSX]DATA'!A3)

'[EXCEL.XLSX]DATA'!B2
filter 0 format_output

=('[EXCEL.XLSX]DATA'!B2 / '[EXCEL.XLSX]DATA'!B3)

'[EXCEL.XLSX]DATA'!B3
filter 0 format_output

'[EXCEL.XLSX]DATA'!C2
filter 0 format_output

end

'[EXCEL.XLSX]DATA'!C2 --> end
out_id 0

startstart --> '[EXCEL.XLSX]DATA'!A2
inp_id 0

2.1.3.3 Custom functions

An example how to add a custom function to the formula parser is the following:

>>> import formulas
>>> FUNCTIONS = formulas.get_functions()
>>> FUNCTIONS['MYFUNC'] = lambda x, y: 1 + y + x
>>> func = formulas.Parser().ast('=MYFUNC(1, 2)')[1].compile()
>>> func()
4

10 Chapter 2. Installation

formulas Documentation, Release 0.1.4

2.1.4 Next moves

Things yet to do: implement the missing Excel formulas.

2.1.5 Contributing to formulas

If you want to contribute to formulas and make it better, your help is very welcome. The contribution should be sent
by a pull request. Next sections will explain how to implement and submit a new excel function:

• clone the repository

• implement a new function/functionality

• open a pull request

2.1.5.1 Clone the repository

The first step to contribute to formulas is to clone the repository:

• Create a personal fork of the formulas repository on Github.

• Clone the fork on your local machine. Your remote repo on Github is called origin.

• Add the original repository as a remote called upstream, to maintain updated your fork.

• If you created your fork a while ago be sure to pull upstream changes into your local repository.

• Create a new branch to work on! Branch from dev.

2.1.5.2 How to implement a new function

Before coding, study the Excel function that you want to implement. If there is something similar implemented in
formulas, try to get inspired by the implemented code (I mean, not reinvent the wheel) and to use numpy. Follow the
code style of the project, including indentation. Add or change the documentation as needed. Make sure that you have
implemented the full function syntax, including the array syntax.

Test cases are very important. This library uses a data-driven testing approach. To implement a new function I
recommend the test-driven development cycle. Hence, when you implement a new function, you should write new
test cases in test_cell/TestCell.test_output suite to execute in the cycle loop. When you think that the
code is ready, add new raw test in test/test_files/test.xlsx (please follow the standard used for other
functions) and run the test_excel/TestExcelModel.test_excel_model. This requires more time but is
needed to test the array syntax and to check if the Excel documentation respects the reality.

When all test cases are ok (python setup.py test), open a pull request.

Do do list:

• Study the excel function syntax and behaviour when used as array formula.

• Check if there is something similar implemented in formulas.

• Implement/fix your feature, comment your code.

• Write/adapt tests and run them!

Tip: Excel functions are categorized by their functionality. If you are implementing a new functionality group,
add a new module in formula/function and in formula.function.SUBMODULES and a new worksheet in
test/test_files/test.xlsx (please respect the format).

2.1. Install extras 11

https://help.github.com/articles/fork-a-repo/#fork-an-example-repository
https://github.com/vinci1it2000/formulas
https://help.github.com/articles/fork-a-repo/#step-2-create-a-local-clone-of-your-fork
https://help.github.com/articles/fork-a-repo/#step-3-configure-git-to-sync-your-fork-with-the-original-spoon-knife-repository
https://support.office.com/en-us/article/excel-functions-alphabetical-b3944572-255d-4efb-bb96-c6d90033e188
https://support.office.com/en-us/article/guidelines-and-examples-of-array-formulas-7d94a64e-3ff3-4686-9372-ecfd5caa57c7
https://en.wikipedia.org/wiki/Test-driven_development#Test-driven_development_cycle

formulas Documentation, Release 0.1.4

Note: A pull request without new test case will not be taken into consideration.

2.1.5.3 How to open a pull request

Well done! Your contribution is ready to be submitted:

• Squash your commits into a single commit with git’s interactive rebase. Create a new branch if necessary.
Always write your commit messages in the present tense. Your commit message should describe what the
commit, when applied, does to the code – not what you did to the code.

• Push your branch to your fork on Github (i.e., git push origin dev).

• From your fork open a pull request in the correct branch. Target the project’s dev branch!

• Once the pull request is approved and merged you can pull the changes from upstream to your local repo and
delete your extra branch(es).

2.1.6 Donate

If you want to support the formulas development please donate and add your excel function preferences. The selection
of the functions to be implemented is done considering the cumulative donation amount per function collected by the
campaign.

Note: The cumulative donation amount per function is calculated as the example:

Function Donator 1 Donator 2 Donator 3 TOT Implementation
order

• 150C 120C 50C • •

SUM 50C 40C 25C 125C 1st
SIN 50C 25C 75C 3rd
TAN 50C 40C 90C 2nd
COS 40C 40C 4th

2.1.7 API Reference

The core of the library is composed from the following modules:

It contains a comprehensive list of all modules and classes within formulas.

Modules:

parser It provides formula parser class.
builder It provides AstBuilder class.
errors Defines the formulas exception.
tokens It provides tokens needed to parse the Excel formulas.
functions It provides functions implementations to compile the

Excel functions.
Continued on next page

12 Chapter 2. Installation

https://help.github.com/articles/interactive-rebase
https://help.github.com/articles/pushing-to-a-remote/
https://help.github.com/articles/creating-a-pull-request-from-a-fork/
https://donorbox.org/formulas

formulas Documentation, Release 0.1.4

Table 1 – continued from previous page
ranges It provides Ranges class.
cell It provides Cell class.
excel It provides Excel model class.

2.1.7.1 parser

It provides formula parser class.

Classes

Parser

Parser

class Parser

Methods

ast
is_formula

ast

Parser.ast(expression, context=None)

is_formula

Parser.is_formula(value)

__init__()
Initialize self. See help(type(self)) for accurate signature.

Attributes

filters
formula_check

filters

Parser.filters = [<class 'formulas.tokens.operand.Error'>, <class 'formulas.tokens.operand.String'>, <class 'formulas.tokens.operand.Number'>, <class 'formulas.tokens.operand.Range'>, <class 'formulas.tokens.operator.OperatorToken'>, <class 'formulas.tokens.operator.Separator'>, <class 'formulas.tokens.function.Function'>, <class 'formulas.tokens.function.Array'>, <class 'formulas.tokens.parenthesis.Parenthesis'>, <class 'formulas.tokens.operator.Intersect'>]

formula_check

Parser.formula_check = regex.Regex('\n (?P<array>^\\s*{\\s*=\\s*(?P<name>\\S.*)\\s*}\\s*$)\n |\n (?P<value>^\\s*=\\s*(?P<name>\\S.*))\n ', flags=regex.S | regex.I | regex.X | regex.V0)

2.1. Install extras 13

formulas Documentation, Release 0.1.4

ast_builder
alias of formulas.builder.AstBuilder

2.1.7.2 builder

It provides AstBuilder class.

Classes

AstBuilder

AstBuilder

class AstBuilder(*args, dsp=None, nodes=None, match=None, **kwargs)

Methods

__init__ Initialize self.
append Add an element to the right side of the deque.
appendleft Add an element to the left side of the deque.
clear Remove all elements from the deque.
compile
copy Return a shallow copy of a deque.
count
extend Extend the right side of the deque with elements

from the iterable
extendleft Extend the left side of the deque with elements from

the iterable
finish
get_node_id
index Raises ValueError if the value is not present.
insert D.insert(index, object) – insert object before index
pop Remove and return the rightmost element.
popleft Remove and return the leftmost element.
remove D.remove(value) – remove first occurrence of value.
reverse D.reverse() – reverse IN PLACE
rotate Rotate the deque n steps to the right (default n=1).

__init__

AstBuilder.__init__(*args, dsp=None, nodes=None, match=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

append

AstBuilder.append(token)
Add an element to the right side of the deque.

14 Chapter 2. Installation

formulas Documentation, Release 0.1.4

appendleft

AstBuilder.appendleft()
Add an element to the left side of the deque.

clear

AstBuilder.clear()
Remove all elements from the deque.

compile

AstBuilder.compile(references=None, **inputs)

copy

AstBuilder.copy()
Return a shallow copy of a deque.

count

AstBuilder.count(value)→ integer – return number of occurrences of value

extend

AstBuilder.extend()
Extend the right side of the deque with elements from the iterable

extendleft

AstBuilder.extendleft()
Extend the left side of the deque with elements from the iterable

finish

AstBuilder.finish()

get_node_id

AstBuilder.get_node_id(token)

index

AstBuilder.index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

2.1. Install extras 15

formulas Documentation, Release 0.1.4

insert

AstBuilder.insert()
D.insert(index, object) – insert object before index

pop

AstBuilder.pop()
Remove and return the rightmost element.

popleft

AstBuilder.popleft()
Remove and return the leftmost element.

remove

AstBuilder.remove()
D.remove(value) – remove first occurrence of value.

reverse

AstBuilder.reverse()
D.reverse() – reverse IN PLACE

rotate

AstBuilder.rotate()
Rotate the deque n steps to the right (default n=1). If n is negative, rotates left.

__init__(*args, dsp=None, nodes=None, match=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

Attributes

maxlen maximum size of a deque or None if unbounded

maxlen

AstBuilder.maxlen
maximum size of a deque or None if unbounded

append(token)
Add an element to the right side of the deque.

16 Chapter 2. Installation

formulas Documentation, Release 0.1.4

2.1.7.3 errors

Defines the formulas exception.

Exceptions

BaseError
BroadcastError
FormulaError
FoundError
FunctionError
ParenthesesError
RangeValueError
TokenError

BaseError

exception BaseError(*args)

BroadcastError

exception BroadcastError(*args)

FormulaError

exception FormulaError(*args)

FoundError

exception FoundError(*args, err=None, **kwargs)

FunctionError

exception FunctionError(*args)

ParenthesesError

exception ParenthesesError(*args)

RangeValueError

exception RangeValueError(*args)

2.1. Install extras 17

formulas Documentation, Release 0.1.4

TokenError

exception TokenError(*args)

2.1.7.4 tokens

It provides tokens needed to parse the Excel formulas.

Sub-Modules:

function It provides Function classes.
operand It provides Operand classes.
operator It provides Operator classes.
parenthesis It provides Parenthesis class.

function

It provides Function classes.

Classes

Array
Function

Array

class Array(s, context=None)

Methods

__init__ Initialize self.
ast
compile
match
process
set_expr
update_input_tokens

__init__

Array.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

ast

Array.ast(tokens, stack, builder, check_n=<function Array.<lambda>>)

18 Chapter 2. Installation

formulas Documentation, Release 0.1.4

compile

Array.compile()

match

Array.match(s)

process

Array.process(match, context=None)

set_expr

Array.set_expr(*tokens)

update_input_tokens

Array.update_input_tokens(*tokens)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

name
node_id

name

Array.name

node_id

Array.node_id

Function

class Function(s, context=None)

Methods

__init__ Initialize self.
ast

Continued on next page

2.1. Install extras 19

formulas Documentation, Release 0.1.4

Table 13 – continued from previous page
compile
match
process
set_expr
update_input_tokens

__init__

Function.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

ast

Function.ast(tokens, stack, builder, check_n=<function Function.<lambda>>)

compile

Function.compile()

match

Function.match(s)

process

Function.process(match, context=None)

set_expr

Function.set_expr(*tokens)

update_input_tokens

Function.update_input_tokens(*tokens)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

name
node_id

20 Chapter 2. Installation

formulas Documentation, Release 0.1.4

name

Function.name

node_id

Function.node_id

operand

It provides Operand classes.

Functions

fast_range2parts
fast_range2parts_v1
fast_range2parts_v2
fast_range2parts_v3
range2parts

fast_range2parts

fast_range2parts(**kw)

fast_range2parts_v1

fast_range2parts_v1(r1, c1, excel, sheet=”)

fast_range2parts_v2

fast_range2parts_v2(r1, c1, r2, c2, excel, sheet=”)

fast_range2parts_v3

fast_range2parts_v3(r1, n1, r2, n2, excel, sheet=”)

range2parts

range2parts(outputs, **inputs)

Classes

Error
Continued on next page

2.1. Install extras 21

formulas Documentation, Release 0.1.4

Table 16 – continued from previous page
Number
Operand
Range
String
XlError

Error

class Error(s, context=None)

Methods

__init__ Initialize self.
ast
compile
match
process
set_expr
update_input_tokens

__init__

Error.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

ast

Error.ast(tokens, stack, builder)

compile

Error.compile()

match

Error.match(s)

process

Error.process(match, context=None)

set_expr

Error.set_expr(*tokens)

22 Chapter 2. Installation

formulas Documentation, Release 0.1.4

update_input_tokens

Error.update_input_tokens(*tokens)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

errors
k
name
node_id

errors

Error.errors = {'#DIV/0!': #DIV/0!, '#N/A': #N/A, '#NAME?': #NAME?, '#NULL!': #NULL!, '#NUM!': #NUM!, '#REF!': #REF!, '#VALUE!': #VALUE!}

k

Error.k = '#N/A'

name

Error.name

node_id

Error.node_id

Number

class Number(s, context=None)

Methods

__init__ Initialize self.
ast
compile
match
process
set_expr
update_input_tokens

2.1. Install extras 23

formulas Documentation, Release 0.1.4

__init__

Number.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

ast

Number.ast(tokens, stack, builder)

compile

Number.compile()

match

Number.match(s)

process

Number.process(match, context=None)

set_expr

Number.set_expr(*tokens)

update_input_tokens

Number.update_input_tokens(*tokens)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

name
node_id

name

Number.name

node_id

Number.node_id

24 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Operand

class Operand(s, context=None)

Methods

__init__ Initialize self.
ast
match
process
set_expr
update_input_tokens

__init__

Operand.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

ast

Operand.ast(tokens, stack, builder)

match

Operand.match(s)

process

Operand.process(match, context=None)

set_expr

Operand.set_expr(*tokens)

update_input_tokens

Operand.update_input_tokens(*tokens)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

name
node_id

2.1. Install extras 25

formulas Documentation, Release 0.1.4

name

Operand.name

node_id

Operand.node_id

Range

class Range(s, context=None)

Methods

__init__ Initialize self.
ast
compile
match
process
set_expr
update_input_tokens

__init__

Range.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

ast

Range.ast(tokens, stack, builder)

compile

Range.compile()

match

Range.match(s)

process

Range.process(match, context=None)

26 Chapter 2. Installation

formulas Documentation, Release 0.1.4

set_expr

Range.set_expr(*tokens)

update_input_tokens

Range.update_input_tokens(*tokens)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

name
node_id

name

Range.name

node_id

Range.node_id

String

class String(s, context=None)

Methods

__init__ Initialize self.
ast
compile
match
process
set_expr
update_input_tokens

__init__

String.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

ast

String.ast(tokens, stack, builder)

2.1. Install extras 27

formulas Documentation, Release 0.1.4

compile

String.compile()

match

String.match(s)

process

String.process(match, context=None)

set_expr

String.set_expr(*tokens)

update_input_tokens

String.update_input_tokens(*tokens)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

name
node_id

name

String.name

node_id

String.node_id

XlError

class XlError

Methods

capitalize Return a capitalized version of S, i.e.
Continued on next page

28 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Table 27 – continued from previous page
casefold Return a version of S suitable for caseless compar-

isons.
center Return S centered in a string of length width.
count Return the number of non-overlapping occurrences

of substring sub in string S[start:end].
encode Encode S using the codec registered for encoding.
endswith Return True if S ends with the specified suffix, False

otherwise.
expandtabs Return a copy of S where all tab characters are ex-

panded using spaces.
find Return the lowest index in S where substring sub is

found, such that sub is contained within S[start:end].
format Return a formatted version of S, using substitutions

from args and kwargs.
format_map Return a formatted version of S, using substitutions

from mapping.
index Like S.find() but raise ValueError when the substring

is not found.
isalnum Return True if all characters in S are alphanumeric

and there is at least one character in S, False other-
wise.

isalpha Return True if all characters in S are alphabetic and
there is at least one character in S, False otherwise.

isdecimal Return True if there are only decimal characters in S,
False otherwise.

isdigit Return True if all characters in S are digits and there
is at least one character in S, False otherwise.

isidentifier Return True if S is a valid identifier according to the
language definition.

islower Return True if all cased characters in S are lowercase
and there is at least one cased character in S, False
otherwise.

isnumeric Return True if there are only numeric characters in
S, False otherwise.

isprintable Return True if all characters in S are considered
printable in repr() or S is empty, False otherwise.

isspace Return True if all characters in S are whitespace and
there is at least one character in S, False otherwise.

istitle Return True if S is a titlecased string and there is at
least one character in S, i.e.

isupper Return True if all cased characters in S are uppercase
and there is at least one cased character in S, False
otherwise.

join Return a string which is the concatenation of the
strings in the iterable.

ljust Return S left-justified in a Unicode string of length
width.

lower Return a copy of the string S converted to lowercase.
lstrip Return a copy of the string S with leading whitespace

removed.
maketrans Return a translation table usable for str.translate().

Continued on next page

2.1. Install extras 29

formulas Documentation, Release 0.1.4

Table 27 – continued from previous page
partition Search for the separator sep in S, and return the part

before it, the separator itself, and the part after it.
replace Return a copy of S with all occurrences of substring

old replaced by new.
rfind Return the highest index in S where substring sub is

found, such that sub is contained within S[start:end].
rindex Like S.rfind() but raise ValueError when the sub-

string is not found.
rjust Return S right-justified in a string of length width.
rpartition Search for the separator sep in S, starting at the end

of S, and return the part before it, the separator itself,
and the part after it.

rsplit Return a list of the words in S, using sep as the de-
limiter string, starting at the end of the string and
working to the front.

rstrip Return a copy of the string S with trailing whitespace
removed.

split Return a list of the words in S, using sep as the de-
limiter string.

splitlines Return a list of the lines in S, breaking at line bound-
aries.

startswith Return True if S starts with the specified prefix, False
otherwise.

strip Return a copy of the string S with leading and trailing
whitespace removed.

swapcase Return a copy of S with uppercase characters con-
verted to lowercase and vice versa.

title Return a titlecased version of S, i.e.
translate Return a copy of the string S in which each character

has been mapped through the given translation table.
upper Return a copy of S converted to uppercase.
zfill Pad a numeric string S with zeros on the left, to fill a

field of the specified width.

capitalize

XlError.capitalize()→ str
Return a capitalized version of S, i.e. make the first character have upper case and the rest lower case.

casefold

XlError.casefold()→ str
Return a version of S suitable for caseless comparisons.

center

XlError.center(width[, fillchar])→ str
Return S centered in a string of length width. Padding is done using the specified fill character (default is
a space)

30 Chapter 2. Installation

formulas Documentation, Release 0.1.4

count

XlError.count(sub[, start[, end]])→ int
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional argu-
ments start and end are interpreted as in slice notation.

encode

XlError.encode(encoding=’utf-8’, errors=’strict’)→ bytes
Encode S using the codec registered for encoding. Default encoding is ‘utf-8’. errors may be given to
set a different error handling scheme. Default is ‘strict’ meaning that encoding errors raise a UnicodeEn-
codeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name
registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith

XlError.endswith(suffix[, start[, end]])→ bool
Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at
that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to
try.

expandtabs

XlError.expandtabs(tabsize=8)→ str
Return a copy of S where all tab characters are expanded using spaces. If tabsize is not given, a tab size
of 8 characters is assumed.

find

XlError.find(sub[, start[, end]])→ int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format

XlError.format(*args, **kwargs)→ str
Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified
by braces (‘{‘ and ‘}’).

format_map

XlError.format_map(mapping)→ str
Return a formatted version of S, using substitutions from mapping. The substitutions are identified by
braces (‘{‘ and ‘}’).

2.1. Install extras 31

formulas Documentation, Release 0.1.4

index

XlError.index(sub[, start[, end]])→ int
Like S.find() but raise ValueError when the substring is not found.

isalnum

XlError.isalnum()→ bool
Return True if all characters in S are alphanumeric and there is at least one character in S, False otherwise.

isalpha

XlError.isalpha()→ bool
Return True if all characters in S are alphabetic and there is at least one character in S, False otherwise.

isdecimal

XlError.isdecimal()→ bool
Return True if there are only decimal characters in S, False otherwise.

isdigit

XlError.isdigit()→ bool
Return True if all characters in S are digits and there is at least one character in S, False otherwise.

isidentifier

XlError.isidentifier()→ bool
Return True if S is a valid identifier according to the language definition.

Use keyword.iskeyword() to test for reserved identifiers such as “def” and “class”.

islower

XlError.islower()→ bool
Return True if all cased characters in S are lowercase and there is at least one cased character in S, False
otherwise.

isnumeric

XlError.isnumeric()→ bool
Return True if there are only numeric characters in S, False otherwise.

32 Chapter 2. Installation

formulas Documentation, Release 0.1.4

isprintable

XlError.isprintable()→ bool
Return True if all characters in S are considered printable in repr() or S is empty, False otherwise.

isspace

XlError.isspace()→ bool
Return True if all characters in S are whitespace and there is at least one character in S, False otherwise.

istitle

XlError.istitle()→ bool
Return True if S is a titlecased string and there is at least one character in S, i.e. upper- and titlecase
characters may only follow uncased characters and lowercase characters only cased ones. Return False
otherwise.

isupper

XlError.isupper()→ bool
Return True if all cased characters in S are uppercase and there is at least one cased character in S, False
otherwise.

join

XlError.join(iterable)→ str
Return a string which is the concatenation of the strings in the iterable. The separator between elements
is S.

ljust

XlError.ljust(width[, fillchar])→ str
Return S left-justified in a Unicode string of length width. Padding is done using the specified fill character
(default is a space).

lower

XlError.lower()→ str
Return a copy of the string S converted to lowercase.

lstrip

XlError.lstrip([chars])→ str
Return a copy of the string S with leading whitespace removed. If chars is given and not None, remove
characters in chars instead.

2.1. Install extras 33

formulas Documentation, Release 0.1.4

maketrans

static XlError.maketrans()
Return a translation table usable for str.translate().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters
to Unicode ordinals, strings or None. Character keys will be then converted to ordinals. If there are two
arguments, they must be strings of equal length, and in the resulting dictionary, each character in x will be
mapped to the character at the same position in y. If there is a third argument, it must be a string, whose
characters will be mapped to None in the result.

partition

XlError.partition(sep) -> (head, sep, tail)
Search for the separator sep in S, and return the part before it, the separator itself, and the part after it. If
the separator is not found, return S and two empty strings.

replace

XlError.replace(old, new[, count])→ str
Return a copy of S with all occurrences of substring old replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

rfind

XlError.rfind(sub[, start[, end]])→ int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex

XlError.rindex(sub[, start[, end]])→ int
Like S.rfind() but raise ValueError when the substring is not found.

rjust

XlError.rjust(width[, fillchar])→ str
Return S right-justified in a string of length width. Padding is done using the specified fill character
(default is a space).

rpartition

XlError.rpartition(sep) -> (head, sep, tail)
Search for the separator sep in S, starting at the end of S, and return the part before it, the separator itself,
and the part after it. If the separator is not found, return two empty strings and S.

34 Chapter 2. Installation

formulas Documentation, Release 0.1.4

rsplit

XlError.rsplit(sep=None, maxsplit=-1)→ list of strings
Return a list of the words in S, using sep as the delimiter string, starting at the end of the string and
working to the front. If maxsplit is given, at most maxsplit splits are done. If sep is not specified, any
whitespace string is a separator.

rstrip

XlError.rstrip([chars])→ str
Return a copy of the string S with trailing whitespace removed. If chars is given and not None, remove
characters in chars instead.

split

XlError.split(sep=None, maxsplit=-1)→ list of strings
Return a list of the words in S, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done. If sep is not specified or is None, any whitespace string is a separator and empty strings
are removed from the result.

splitlines

XlError.splitlines([keepends])→ list of strings
Return a list of the lines in S, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

startswith

XlError.startswith(prefix[, start[, end]])→ bool
Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at
that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to
try.

strip

XlError.strip([chars])→ str
Return a copy of the string S with leading and trailing whitespace removed. If chars is given and not
None, remove characters in chars instead.

swapcase

XlError.swapcase()→ str
Return a copy of S with uppercase characters converted to lowercase and vice versa.

2.1. Install extras 35

formulas Documentation, Release 0.1.4

title

XlError.title()→ str
Return a titlecased version of S, i.e. words start with title case characters, all remaining cased characters
have lower case.

translate

XlError.translate(table)→ str
Return a copy of the string S in which each character has been mapped through the given translation table.
The table must implement lookup/indexing via __getitem__, for instance a dictionary or list, mapping
Unicode ordinals to Unicode ordinals, strings, or None. If this operation raises LookupError, the character
is left untouched. Characters mapped to None are deleted.

upper

XlError.upper()→ str
Return a copy of S converted to uppercase.

zfill

XlError.zfill(width)→ str
Pad a numeric string S with zeros on the left, to fill a field of the specified width. The string S is never
truncated.

__init__()
Initialize self. See help(type(self)) for accurate signature.

operator

It provides Operator classes.

Classes

Intersect
Operator
OperatorToken
Separator

Intersect

class Intersect(s, context=None)

Methods

36 Chapter 2. Installation

formulas Documentation, Release 0.1.4

__init__ Initialize self.
ast
compile
match
process
set_expr
update_input_tokens
update_name

__init__

Intersect.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

ast

Intersect.ast(tokens, stack, builder)

compile

Intersect.compile()

match

Intersect.match(s)

process

Intersect.process(match, context=None)

set_expr

Intersect.set_expr(*tokens)

update_input_tokens

Intersect.update_input_tokens(*tokens)

update_name

Intersect.update_name(tokens, stack)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

2.1. Install extras 37

formulas Documentation, Release 0.1.4

Attributes

get_n_args
name
node_id
pred

get_n_args

Intersect.get_n_args

name

Intersect.name

node_id

Intersect.node_id

pred

Intersect.pred

Operator

class Operator(s, context=None)

Methods

__init__ Initialize self.
ast
compile
match
process
set_expr
update_input_tokens
update_name

__init__

Operator.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

38 Chapter 2. Installation

formulas Documentation, Release 0.1.4

ast

Operator.ast(tokens, stack, builder)

compile

Operator.compile()

match

Operator.match(s)

process

Operator.process(match, context=None)

set_expr

Operator.set_expr(*tokens)

update_input_tokens

Operator.update_input_tokens(*tokens)

update_name

Operator.update_name(tokens, stack)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

get_n_args
name
node_id
pred

get_n_args

Operator.get_n_args

name

Operator.name

2.1. Install extras 39

formulas Documentation, Release 0.1.4

node_id

Operator.node_id

pred

Operator.pred

OperatorToken

class OperatorToken(s, context=None)

Methods

__init__ Initialize self.
ast
compile
match
process
set_expr
update_input_tokens
update_name

__init__

OperatorToken.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

ast

OperatorToken.ast(tokens, stack, builder)

compile

OperatorToken.compile()

match

OperatorToken.match(s)

process

OperatorToken.process(match, context=None)

40 Chapter 2. Installation

formulas Documentation, Release 0.1.4

set_expr

OperatorToken.set_expr(*tokens)

update_input_tokens

OperatorToken.update_input_tokens(*tokens)

update_name

OperatorToken.update_name(tokens, stack)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

get_n_args
name
node_id
pred

get_n_args

OperatorToken.get_n_args

name

OperatorToken.name

node_id

OperatorToken.node_id

pred

OperatorToken.pred

Separator

class Separator(s, context=None)

Methods

2.1. Install extras 41

formulas Documentation, Release 0.1.4

__init__ Initialize self.
ast
compile
match
process
set_expr
update_input_tokens
update_name

__init__

Separator.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

ast

Separator.ast(tokens, stack, builder)

compile

Separator.compile()

match

Separator.match(s)

process

Separator.process(match, context=None)

set_expr

Separator.set_expr(*tokens)

update_input_tokens

Separator.update_input_tokens(*tokens)

update_name

Separator.update_name(tokens, stack)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

42 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Attributes

get_n_args
name
node_id
pred

get_n_args

Separator.get_n_args

name

Separator.name

node_id

Separator.node_id

pred

Separator.pred

parenthesis

It provides Parenthesis class.

Classes

Parenthesis

Parenthesis

class Parenthesis(s, context=None)

Methods

__init__ Initialize self.
ast
match
process
set_expr
update_input_tokens

2.1. Install extras 43

formulas Documentation, Release 0.1.4

__init__

Parenthesis.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

ast

Parenthesis.ast(tokens, stack, builder)

match

Parenthesis.match(s)

process

Parenthesis.process(match, context=None)

set_expr

Parenthesis.set_expr(*tokens)

update_input_tokens

Parenthesis.update_input_tokens(*tokens)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

n_args
name
node_id
opens

n_args

Parenthesis.n_args = 0

name

Parenthesis.name

44 Chapter 2. Installation

formulas Documentation, Release 0.1.4

node_id

Parenthesis.node_id

opens

Parenthesis.opens = {')': '('}

Classes

Token

Token

class Token(s, context=None)

Methods

__init__ Initialize self.
ast
match
process
set_expr
update_input_tokens

__init__

Token.__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

ast

Token.ast(tokens, stack, builder)

match

Token.match(s)

process

Token.process(match, context=None)

set_expr

Token.set_expr(*tokens)

2.1. Install extras 45

formulas Documentation, Release 0.1.4

update_input_tokens

Token.update_input_tokens(*tokens)

__init__(s, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

name
node_id

name

Token.name

node_id

Token.node_id

2.1.7.5 functions

It provides functions implementations to compile the Excel functions.

Sub-Modules:

eng Python equivalents of engineering Excel functions.
financial Python equivalents of financial Excel functions.
info Python equivalents of information Excel functions.
logic Python equivalents of logical Excel functions.
look Python equivalents of lookup and reference Excel func-

tions.
math Python equivalents of math and trigonometry Excel

functions.
operators Python equivalents of Excel operators.
stat Python equivalents of statistical Excel functions.
text Python equivalents of text Excel functions.

eng

Python equivalents of engineering Excel functions.

financial

Python equivalents of financial Excel functions.

46 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Functions

xirr

xirr

xirr(x, guess=0.1)

info

Python equivalents of information Excel functions.

Functions

iserr
iserror

iserr

iserr(val)

iserror

iserror(val)

Classes

IsErrArray
IsErrorArray

IsErrArray

class IsErrArray

Methods

all Returns True if all elements evaluate to True.
any Returns True if any of the elements of a evaluate to

True.
argmax Return indices of the maximum values along the

given axis.
argmin Return indices of the minimum values along the

given axis of a.
argpartition Returns the indices that would partition this array.

Continued on next page

2.1. Install extras 47

formulas Documentation, Release 0.1.4

Table 47 – continued from previous page
argsort Returns the indices that would sort this array.
astype Copy of the array, cast to a specified type.
byteswap Swap the bytes of the array elements
choose Use an index array to construct a new array from a

set of choices.
clip Return an array whose values are limited to [min,

max].
collapse
compress Return selected slices of this array along given axis.
conj Complex-conjugate all elements.
conjugate Return the complex conjugate, element-wise.
copy Return a copy of the array.
cumprod Return the cumulative product of the elements along

the given axis.
cumsum Return the cumulative sum of the elements along the

given axis.
diagonal Return specified diagonals.
dot Dot product of two arrays.
dump Dump a pickle of the array to the specified file.
dumps Returns the pickle of the array as a string.
fill Fill the array with a scalar value.
flatten Return a copy of the array collapsed into one dimen-

sion.
getfield Returns a field of the given array as a certain type.
item Copy an element of an array to a standard Python

scalar and return it.
itemset Insert scalar into an array (scalar is cast to array’s

dtype, if possible)
max Return the maximum along a given axis.
mean Returns the average of the array elements along

given axis.
min Return the minimum along a given axis.
newbyteorder Return the array with the same data viewed with a

different byte order.
nonzero Return the indices of the elements that are non-zero.
partition Rearranges the elements in the array in such a way

that value of the element in kth position is in the po-
sition it would be in a sorted array.

prod Return the product of the array elements over the
given axis

ptp Peak to peak (maximum - minimum) value along a
given axis.

put Set a.flat[n] = values[n] for all n in in-
dices.

ravel Return a flattened array.
repeat Repeat elements of an array.
reshape Returns an array containing the same data with a new

shape.
resize Change shape and size of array in-place.
round Return a with each element rounded to the given

number of decimals.
Continued on next page

48 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Table 47 – continued from previous page
searchsorted Find indices where elements of v should be inserted

in a to maintain order.
setfield Put a value into a specified place in a field defined by

a data-type.
setflags Set array flags WRITEABLE, ALIGNED, and UP-

DATEIFCOPY, respectively.
sort Sort an array, in-place.
squeeze Remove single-dimensional entries from the shape

of a.
std Returns the standard deviation of the array elements

along given axis.
sum Return the sum of the array elements over the given

axis.
swapaxes Return a view of the array with axis1 and axis2 in-

terchanged.
take Return an array formed from the elements of a at the

given indices.
tobytes Construct Python bytes containing the raw data bytes

in the array.
tofile Write array to a file as text or binary (default).
tolist Return the array as a (possibly nested) list.
tostring Construct Python bytes containing the raw data bytes

in the array.
trace Return the sum along diagonals of the array.
transpose Returns a view of the array with axes transposed.
var Returns the variance of the array elements, along

given axis.
view New view of array with the same data.

all

IsErrArray.all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

numpy.all : equivalent function

any

IsErrArray.any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

numpy.any : equivalent function

argmax

IsErrArray.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

2.1. Install extras 49

formulas Documentation, Release 0.1.4

Refer to numpy.argmax for full documentation.

numpy.argmax : equivalent function

argmin

IsErrArray.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

numpy.argmin : equivalent function

argpartition

IsErrArray.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

numpy.argpartition : equivalent function

argsort

IsErrArray.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

numpy.argsort : equivalent function

astype

IsErrArray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C order,
‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order
otherwise, and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.

• ‘unsafe’ means any data conversions may be done.

50 Chapter 2. Installation

formulas Documentation, Release 0.1.4

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise the returned
array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is set to false, and
the dtype, order, and subok requirements are satisfied, the input array is returned instead of a copy.

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as the input array,
with dtype, order given by dtype, order.

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

ComplexWarning When casting from complex to float or int. To avoid this, one should use a.real.
astype(t).

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

byteswap

IsErrArray.byteswap(inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

inplace [bool, optional] If True, swap bytes in-place, default is False.

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

2.1. Install extras 51

formulas Documentation, Release 0.1.4

choose

IsErrArray.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

numpy.choose : equivalent function

clip

IsErrArray.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

numpy.clip : equivalent function

collapse

IsErrArray.collapse(shape)

compress

IsErrArray.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

numpy.compress : equivalent function

conj

IsErrArray.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

conjugate

IsErrArray.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

52 Chapter 2. Installation

formulas Documentation, Release 0.1.4

copy

IsErrArray.copy(order=’C’)
Return a copy of the array.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout
of a as closely as possible. (Note that this function and :func:numpy.copy are very similar, but have
different default values for their order= arguments.)

numpy.copy numpy.copyto

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

cumprod

IsErrArray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

numpy.cumprod : equivalent function

cumsum

IsErrArray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

numpy.cumsum : equivalent function

diagonal

IsErrArray.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

2.1. Install extras 53

formulas Documentation, Release 0.1.4

Refer to numpy.diagonal() for full documentation.

numpy.diagonal : equivalent function

dot

IsErrArray.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

numpy.dot : equivalent function

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],

[2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],

[8., 8.]])

dump

IsErrArray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

file [str] A string naming the dump file.

dumps

IsErrArray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

None

fill

IsErrArray.fill(value)
Fill the array with a scalar value.

value [scalar] All elements of a will be assigned this value.

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)

(continues on next page)

54 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> a
array([1., 1.])

flatten

IsErrArray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is
Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the
elements occur in memory. The default is ‘C’.

y [ndarray] A copy of the input array, flattened to one dimension.

ravel : Return a flattened array. flat : A 1-D flat iterator over the array.

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

getfield

IsErrArray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype
fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view
with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger than that of
the array itself.

offset [int] Number of bytes to skip before beginning the element view.

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

2.1. Install extras 55

formulas Documentation, Release 0.1.4

item

IsErrArray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which element
is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which element to
copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument is inter-
preted as an nd-index into the array.

z [Standard Python scalar object] A copy of the specified element of the array as a suitable Python scalar

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

itemset

IsErrArray.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two arguments: the
last argument is the value to be set and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

56 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

max

IsErrArray.max(axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

numpy.amax : equivalent function

mean

IsErrArray.mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

numpy.mean : equivalent function

min

IsErrArray.min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

numpy.amin : equivalent function

newbyteorder

IsErrArray.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

new_order [string, optional] Byte order to force; a value from the byte order specifications below.
new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

2.1. Install extras 57

formulas Documentation, Release 0.1.4

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-insensitive
check on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’ or
‘biggish’ are valid to specify big-endian.

new_arr [array] New array object with the dtype reflecting given change to the byte order.

nonzero

IsErrArray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

numpy.nonzero : equivalent function

partition

IsErrArray.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

kth [int or sequence of ints] Element index to partition by. The kth element value will be in its final
sorted position and all smaller elements will be moved before it and all equal or greater elements
behind it. The order all elements in the partitions is undefined. If provided with a sequence of kth
it will partition all elements indexed by kth of them into their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.partition : Return a parititioned copy of an array. argpartition : Indirect partition. sort : Full sort.

See np.partition for notes on the different algorithms.

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

58 Chapter 2. Installation

formulas Documentation, Release 0.1.4

prod

IsErrArray.prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

numpy.prod : equivalent function

ptp

IsErrArray.ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

numpy.ptp : equivalent function

put

IsErrArray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

numpy.put : equivalent function

ravel

IsErrArray.ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

numpy.ravel : equivalent function

ndarray.flat : a flat iterator on the array.

repeat

IsErrArray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

numpy.repeat : equivalent function

reshape

IsErrArray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

numpy.reshape : equivalent function

2.1. Install extras 59

formulas Documentation, Release 0.1.4

resize

IsErrArray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

None

ValueError If a does not own its own data or references or views to it exist, and the data memory must
be changed.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

resize : Return a new array with the specified shape.

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so
if you are sure that you have not shared the memory for this array with another Python object, then you
may safely set refcheck to False.

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and
reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

60 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

round

IsErrArray.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

numpy.around : equivalent function

searchsorted

IsErrArray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

numpy.searchsorted : equivalent function

setfield

IsErrArray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

None

getfield

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)

(continues on next page)

2.1. Install extras 61

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

setflags

IsErrArray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the
array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or
is a string. (The exception for string is made so that unpickling can be done without copying memory.)

write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the
compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):

(continues on next page)

62 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True

sort

IsErrArray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’}, optional] Sorting algorithm. Default is ‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.sort : Return a sorted copy of an array. argsort : Indirect sort. lexsort : Indirect stable sort on
multiple keys. searchsorted : Find elements in sorted array. partition: Partial sort.

See sort for notes on the different sorting algorithms.

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

squeeze

IsErrArray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

numpy.squeeze : equivalent function

std

IsErrArray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

2.1. Install extras 63

formulas Documentation, Release 0.1.4

Refer to numpy.std for full documentation.

numpy.std : equivalent function

sum

IsErrArray.sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

numpy.sum : equivalent function

swapaxes

IsErrArray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

numpy.swapaxes : equivalent function

take

IsErrArray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

numpy.take : equivalent function

tobytes

IsErrArray.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

64 Chapter 2. Installation

formulas Documentation, Release 0.1.4

tofile

IsErrArray.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

fid [file or str] An open file object, or a string containing a filename.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written, equivalent
to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by first convert-
ing it to the closest Python type, and then using “format” % item.

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

tolist

IsErrArray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

none

y [list] The possibly nested list of array elements.

The array may be recreated, a = np.array(a.tolist()).

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

tostring

IsErrArray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

2.1. Install extras 65

formulas Documentation, Release 0.1.4

s [bytes] Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

trace

IsErrArray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

numpy.trace : equivalent function

transpose

IsErrArray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array
into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alterna-
tive to the tuple form)

out [ndarray] View of a, with axes suitably permuted.

ndarray.T : Array property returning the array transposed.

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

66 Chapter 2. Installation

formulas Documentation, Release 0.1.4

var

IsErrArray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

numpy.var : equivalent function

view

IsErrArray.view(dtype=None, type=None)
New view of array with the same data.

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g., float32
or int16. The default, None, results in the view having the same data-type as a. This argument can
also be specified as an ndarray sub-class, which then specifies the type of the returned object (this
is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the default None
results in type preservation.

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s mem-
ory with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an in-
stance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause
a reinterpretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as
a slice or transpose, etc., the view may give different results.

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

2.1. Install extras 67

formulas Documentation, Release 0.1.4

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

__init__()
Initialize self. See help(type(self)) for accurate signature.

Attributes

T Same as self.transpose(), except that self is returned
if self.ndim < 2.

base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with

the ctypes module.
data Python buffer object pointing to the start of the ar-

ray’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.

Continued on next page

68 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Table 48 – continued from previous page
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when

traversing an array.

T

IsErrArray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])
>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

base

IsErrArray.base
Base object if memory is from some other object.

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

ctypes

IsErrArray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

None

c [Python object] Possessing attributes data, shape, strides, etc.

2.1. Install extras 69

formulas Documentation, Release 0.1.4

numpy.ctypeslib

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

• data: A pointer to the memory area of the array as a Python integer. This memory area may
contain data that is not aligned, or not in correct byte-order. The memory area may not even be
writeable. The array flags and data-type of this array should be respected when passing this attribute
to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of
this attribute is exactly the same as self._array_interface_[‘data’][0].

• shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

• strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for
the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

• data_as(obj): Return the data pointer cast to a particular c-types object. For ex-
ample, calling self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Per-
haps you want to use the data as a pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

• shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

• strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly.
For example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated before the next Python statement. You
can avoid this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a
reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something
useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will
still have the as parameter attribute which will return an integer equal to the data attribute.

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides

(continues on next page)

70 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

data

IsErrArray.data
Python buffer object pointing to the start of the array’s data.

dtype

IsErrArray.dtype
Data-type of the array’s elements.

None

d : numpy dtype object

numpy.dtype

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

flags

IsErrArray.flags
Information about the memory layout of the array.

C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.

F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.

OWNDATA (O) The array owns the memory it uses or borrows it from another object.

WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making it read-
only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a
writeable array may be subsequently locked while the base array remains writeable. (The opposite
is not true, in that a view of a locked array may not be made writeable. However, currently, locking
a base object does not lock any views that already reference it, so under that circumstance it is
possible to alter the contents of a locked array via a previously created writeable view onto it.)
Attempting to change a non-writeable array raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

UPDATEIFCOPY (U) This array is a copy of some other array. When this array is deallocated, the base
array will be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

2.1. Install extras 71

formulas Documentation, Release 0.1.4

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lower-
cased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

• UPDATEIFCOPY can only be set False.

• ALIGNED can only be set True if the data is truly aligned.

• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary
if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that self.
strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0] ==
self.itemsize for Fortran-style contiguous arrays is true.

flat

IsErrArray.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

flatten : Return a copy of the array collapsed into one dimension.

flatiter

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

72 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

imag

IsErrArray.imag
The imaginary part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

itemsize

IsErrArray.itemsize
Length of one array element in bytes.

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

nbytes

IsErrArray.nbytes
Total bytes consumed by the elements of the array.

Does not include memory consumed by non-element attributes of the array object.

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

ndim

IsErrArray.ndim
Number of array dimensions.

2.1. Install extras 73

formulas Documentation, Release 0.1.4

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

real

IsErrArray.real
The real part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

numpy.real : equivalent function

shape

IsErrArray.shape
Tuple of array dimensions.

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged

size

IsErrArray.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

74 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

strides

IsErrArray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

numpy.lib.stride_tricks.as_strided

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

2.1. Install extras 75

formulas Documentation, Release 0.1.4

IsErrorArray

class IsErrorArray

Methods

all Returns True if all elements evaluate to True.
any Returns True if any of the elements of a evaluate to

True.
argmax Return indices of the maximum values along the

given axis.
argmin Return indices of the minimum values along the

given axis of a.
argpartition Returns the indices that would partition this array.
argsort Returns the indices that would sort this array.
astype Copy of the array, cast to a specified type.
byteswap Swap the bytes of the array elements
choose Use an index array to construct a new array from a

set of choices.
clip Return an array whose values are limited to [min,

max].
collapse
compress Return selected slices of this array along given axis.
conj Complex-conjugate all elements.
conjugate Return the complex conjugate, element-wise.
copy Return a copy of the array.
cumprod Return the cumulative product of the elements along

the given axis.
cumsum Return the cumulative sum of the elements along the

given axis.
diagonal Return specified diagonals.
dot Dot product of two arrays.
dump Dump a pickle of the array to the specified file.
dumps Returns the pickle of the array as a string.
fill Fill the array with a scalar value.
flatten Return a copy of the array collapsed into one dimen-

sion.
getfield Returns a field of the given array as a certain type.
item Copy an element of an array to a standard Python

scalar and return it.
itemset Insert scalar into an array (scalar is cast to array’s

dtype, if possible)
max Return the maximum along a given axis.
mean Returns the average of the array elements along

given axis.
min Return the minimum along a given axis.
newbyteorder Return the array with the same data viewed with a

different byte order.
nonzero Return the indices of the elements that are non-zero.

Continued on next page

76 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Table 49 – continued from previous page
partition Rearranges the elements in the array in such a way

that value of the element in kth position is in the po-
sition it would be in a sorted array.

prod Return the product of the array elements over the
given axis

ptp Peak to peak (maximum - minimum) value along a
given axis.

put Set a.flat[n] = values[n] for all n in in-
dices.

ravel Return a flattened array.
repeat Repeat elements of an array.
reshape Returns an array containing the same data with a new

shape.
resize Change shape and size of array in-place.
round Return a with each element rounded to the given

number of decimals.
searchsorted Find indices where elements of v should be inserted

in a to maintain order.
setfield Put a value into a specified place in a field defined by

a data-type.
setflags Set array flags WRITEABLE, ALIGNED, and UP-

DATEIFCOPY, respectively.
sort Sort an array, in-place.
squeeze Remove single-dimensional entries from the shape

of a.
std Returns the standard deviation of the array elements

along given axis.
sum Return the sum of the array elements over the given

axis.
swapaxes Return a view of the array with axis1 and axis2 in-

terchanged.
take Return an array formed from the elements of a at the

given indices.
tobytes Construct Python bytes containing the raw data bytes

in the array.
tofile Write array to a file as text or binary (default).
tolist Return the array as a (possibly nested) list.
tostring Construct Python bytes containing the raw data bytes

in the array.
trace Return the sum along diagonals of the array.
transpose Returns a view of the array with axes transposed.
var Returns the variance of the array elements, along

given axis.
view New view of array with the same data.

all

IsErrorArray.all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

numpy.all : equivalent function

2.1. Install extras 77

formulas Documentation, Release 0.1.4

any

IsErrorArray.any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

numpy.any : equivalent function

argmax

IsErrorArray.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

numpy.argmax : equivalent function

argmin

IsErrorArray.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

numpy.argmin : equivalent function

argpartition

IsErrorArray.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

numpy.argpartition : equivalent function

argsort

IsErrorArray.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

numpy.argsort : equivalent function

astype

IsErrorArray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

dtype [str or dtype] Typecode or data-type to which the array is cast.

78 Chapter 2. Installation

formulas Documentation, Release 0.1.4

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C order,
‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order
otherwise, and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise the returned
array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is set to false, and
the dtype, order, and subok requirements are satisfied, the input array is returned instead of a copy.

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as the input array,
with dtype, order given by dtype, order.

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

ComplexWarning When casting from complex to float or int. To avoid this, one should use a.real.
astype(t).

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

byteswap

IsErrorArray.byteswap(inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

inplace [bool, optional] If True, swap bytes in-place, default is False.

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']

(continues on next page)

2.1. Install extras 79

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

choose

IsErrorArray.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

numpy.choose : equivalent function

clip

IsErrorArray.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

numpy.clip : equivalent function

collapse

IsErrorArray.collapse(shape)

compress

IsErrorArray.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

numpy.compress : equivalent function

conj

IsErrorArray.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

80 Chapter 2. Installation

formulas Documentation, Release 0.1.4

conjugate

IsErrorArray.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

copy

IsErrorArray.copy(order=’C’)
Return a copy of the array.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout
of a as closely as possible. (Note that this function and :func:numpy.copy are very similar, but have
different default values for their order= arguments.)

numpy.copy numpy.copyto

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

cumprod

IsErrorArray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

numpy.cumprod : equivalent function

cumsum

IsErrorArray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

2.1. Install extras 81

formulas Documentation, Release 0.1.4

numpy.cumsum : equivalent function

diagonal

IsErrorArray.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

numpy.diagonal : equivalent function

dot

IsErrorArray.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

numpy.dot : equivalent function

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],

[2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],

[8., 8.]])

dump

IsErrorArray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

file [str] A string naming the dump file.

dumps

IsErrorArray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

None

fill

IsErrorArray.fill(value)
Fill the array with a scalar value.

82 Chapter 2. Installation

formulas Documentation, Release 0.1.4

value [scalar] All elements of a will be assigned this value.

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

flatten

IsErrorArray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is
Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the
elements occur in memory. The default is ‘C’.

y [ndarray] A copy of the input array, flattened to one dimension.

ravel : Return a flattened array. flat : A 1-D flat iterator over the array.

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

getfield

IsErrorArray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype
fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view
with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger than that of
the array itself.

offset [int] Number of bytes to skip before beginning the element view.

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

2.1. Install extras 83

formulas Documentation, Release 0.1.4

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

item

IsErrorArray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which element
is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which element to
copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument is inter-
preted as an nd-index into the array.

z [Standard Python scalar object] A copy of the specified element of the array as a suitable Python scalar

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

itemset

IsErrorArray.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

84 Chapter 2. Installation

formulas Documentation, Release 0.1.4

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two arguments: the
last argument is the value to be set and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

max

IsErrorArray.max(axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

numpy.amax : equivalent function

mean

IsErrorArray.mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

numpy.mean : equivalent function

min

IsErrorArray.min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

numpy.amin : equivalent function

newbyteorder

IsErrorArray.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

2.1. Install extras 85

formulas Documentation, Release 0.1.4

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

new_order [string, optional] Byte order to force; a value from the byte order specifications below.
new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-insensitive
check on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’ or
‘biggish’ are valid to specify big-endian.

new_arr [array] New array object with the dtype reflecting given change to the byte order.

nonzero

IsErrorArray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

numpy.nonzero : equivalent function

partition

IsErrorArray.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

kth [int or sequence of ints] Element index to partition by. The kth element value will be in its final
sorted position and all smaller elements will be moved before it and all equal or greater elements
behind it. The order all elements in the partitions is undefined. If provided with a sequence of kth
it will partition all elements indexed by kth of them into their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.partition : Return a parititioned copy of an array. argpartition : Indirect partition. sort : Full sort.

See np.partition for notes on the different algorithms.

86 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

prod

IsErrorArray.prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

numpy.prod : equivalent function

ptp

IsErrorArray.ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

numpy.ptp : equivalent function

put

IsErrorArray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

numpy.put : equivalent function

ravel

IsErrorArray.ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

numpy.ravel : equivalent function

ndarray.flat : a flat iterator on the array.

repeat

IsErrorArray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

numpy.repeat : equivalent function

2.1. Install extras 87

formulas Documentation, Release 0.1.4

reshape

IsErrorArray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

numpy.reshape : equivalent function

resize

IsErrorArray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

None

ValueError If a does not own its own data or references or views to it exist, and the data memory must
be changed.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

resize : Return a new array with the specified shape.

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so
if you are sure that you have not shared the memory for this array with another Python object, then you
may safely set refcheck to False.

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and
reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

88 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

round

IsErrorArray.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

numpy.around : equivalent function

searchsorted

IsErrorArray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

numpy.searchsorted : equivalent function

setfield

IsErrorArray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

None

getfield

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)

(continues on next page)

2.1. Install extras 89

formulas Documentation, Release 0.1.4

(continued from previous page)

array([[3, 3, 3],
[3, 3, 3],
[3, 3, 3]])

>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

setflags

IsErrorArray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the
array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or
is a string. (The exception for string is made so that unpickling can be done without copying memory.)

write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the
compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

(continues on next page)

90 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set UPDATEIFCOPY flag to True

sort

IsErrorArray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’}, optional] Sorting algorithm. Default is ‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.sort : Return a sorted copy of an array. argsort : Indirect sort. lexsort : Indirect stable sort on
multiple keys. searchsorted : Find elements in sorted array. partition: Partial sort.

See sort for notes on the different sorting algorithms.

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

squeeze

IsErrorArray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

numpy.squeeze : equivalent function

2.1. Install extras 91

formulas Documentation, Release 0.1.4

std

IsErrorArray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

numpy.std : equivalent function

sum

IsErrorArray.sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

numpy.sum : equivalent function

swapaxes

IsErrorArray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

numpy.swapaxes : equivalent function

take

IsErrorArray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

numpy.take : equivalent function

tobytes

IsErrorArray.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

92 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

tofile

IsErrorArray.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

fid [file or str] An open file object, or a string containing a filename.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written, equivalent
to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by first convert-
ing it to the closest Python type, and then using “format” % item.

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

tolist

IsErrorArray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

none

y [list] The possibly nested list of array elements.

The array may be recreated, a = np.array(a.tolist()).

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

tostring

IsErrorArray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

2.1. Install extras 93

formulas Documentation, Release 0.1.4

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

trace

IsErrorArray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

numpy.trace : equivalent function

transpose

IsErrorArray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array
into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alterna-
tive to the tuple form)

out [ndarray] View of a, with axes suitably permuted.

ndarray.T : Array property returning the array transposed.

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])

(continues on next page)

94 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

var

IsErrorArray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

numpy.var : equivalent function

view

IsErrorArray.view(dtype=None, type=None)
New view of array with the same data.

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g., float32
or int16. The default, None, results in the view having the same data-type as a. This argument can
also be specified as an ndarray sub-class, which then specifies the type of the returned object (this
is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the default None
results in type preservation.

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s mem-
ory with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an in-
stance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause
a reinterpretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as
a slice or transpose, etc., the view may give different results.

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)

(continues on next page)

2.1. Install extras 95

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

__init__()
Initialize self. See help(type(self)) for accurate signature.

Attributes

96 Chapter 2. Installation

formulas Documentation, Release 0.1.4

T Same as self.transpose(), except that self is returned
if self.ndim < 2.

base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with

the ctypes module.
data Python buffer object pointing to the start of the ar-

ray’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when

traversing an array.

T

IsErrorArray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])
>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

base

IsErrorArray.base
Base object if memory is from some other object.

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

2.1. Install extras 97

formulas Documentation, Release 0.1.4

>>> y = x[2:]
>>> y.base is x
True

ctypes

IsErrorArray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

None

c [Python object] Possessing attributes data, shape, strides, etc.

numpy.ctypeslib

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

• data: A pointer to the memory area of the array as a Python integer. This memory area may
contain data that is not aligned, or not in correct byte-order. The memory area may not even be
writeable. The array flags and data-type of this array should be respected when passing this attribute
to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of
this attribute is exactly the same as self._array_interface_[‘data’][0].

• shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

• strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for
the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

• data_as(obj): Return the data pointer cast to a particular c-types object. For ex-
ample, calling self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Per-
haps you want to use the data as a pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

• shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

• strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly.
For example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated before the next Python statement. You
can avoid this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a
reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something
useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will
still have the as parameter attribute which will return an integer equal to the data attribute.

98 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

data

IsErrorArray.data
Python buffer object pointing to the start of the array’s data.

dtype

IsErrorArray.dtype
Data-type of the array’s elements.

None

d : numpy dtype object

numpy.dtype

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

flags

IsErrorArray.flags
Information about the memory layout of the array.

C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.

F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.

OWNDATA (O) The array owns the memory it uses or borrows it from another object.

2.1. Install extras 99

formulas Documentation, Release 0.1.4

WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making it read-
only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a
writeable array may be subsequently locked while the base array remains writeable. (The opposite
is not true, in that a view of a locked array may not be made writeable. However, currently, locking
a base object does not lock any views that already reference it, so under that circumstance it is
possible to alter the contents of a locked array via a previously created writeable view onto it.)
Attempting to change a non-writeable array raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

UPDATEIFCOPY (U) This array is a copy of some other array. When this array is deallocated, the base
array will be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lower-
cased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

• UPDATEIFCOPY can only be set False.

• ALIGNED can only be set True if the data is truly aligned.

• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary
if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that self.
strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0] ==
self.itemsize for Fortran-style contiguous arrays is true.

flat

IsErrorArray.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

flatten : Return a copy of the array collapsed into one dimension.

flatiter

100 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

imag

IsErrorArray.imag
The imaginary part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

itemsize

IsErrorArray.itemsize
Length of one array element in bytes.

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

nbytes

IsErrorArray.nbytes
Total bytes consumed by the elements of the array.

Does not include memory consumed by non-element attributes of the array object.

2.1. Install extras 101

formulas Documentation, Release 0.1.4

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

ndim

IsErrorArray.ndim
Number of array dimensions.

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

real

IsErrorArray.real
The real part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

numpy.real : equivalent function

shape

IsErrorArray.shape
Tuple of array dimensions.

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):

(continues on next page)

102 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

size

IsErrorArray.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

strides

IsErrorArray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

numpy.lib.stride_tricks.as_strided

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))

(continues on next page)

2.1. Install extras 103

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

logic

Python equivalents of logical Excel functions.

Functions

solve_cycle
xif
xiferror
xiferror_otype

solve_cycle

solve_cycle(*args)

xif

xif(condition, x=True, y=False)

xiferror

xiferror(val, val_if_error)

xiferror_otype

xiferror_otype(val, val_if_error)

Classes

IfArray
IfErrorArray

104 Chapter 2. Installation

formulas Documentation, Release 0.1.4

IfArray

class IfArray

Methods

all Returns True if all elements evaluate to True.
any Returns True if any of the elements of a evaluate to

True.
argmax Return indices of the maximum values along the

given axis.
argmin Return indices of the minimum values along the

given axis of a.
argpartition Returns the indices that would partition this array.
argsort Returns the indices that would sort this array.
astype Copy of the array, cast to a specified type.
byteswap Swap the bytes of the array elements
choose Use an index array to construct a new array from a

set of choices.
clip Return an array whose values are limited to [min,

max].
collapse
compress Return selected slices of this array along given axis.
conj Complex-conjugate all elements.
conjugate Return the complex conjugate, element-wise.
copy Return a copy of the array.
cumprod Return the cumulative product of the elements along

the given axis.
cumsum Return the cumulative sum of the elements along the

given axis.
diagonal Return specified diagonals.
dot Dot product of two arrays.
dump Dump a pickle of the array to the specified file.
dumps Returns the pickle of the array as a string.
fill Fill the array with a scalar value.
flatten Return a copy of the array collapsed into one dimen-

sion.
getfield Returns a field of the given array as a certain type.
item Copy an element of an array to a standard Python

scalar and return it.
itemset Insert scalar into an array (scalar is cast to array’s

dtype, if possible)
max Return the maximum along a given axis.
mean Returns the average of the array elements along

given axis.
min Return the minimum along a given axis.
newbyteorder Return the array with the same data viewed with a

different byte order.
nonzero Return the indices of the elements that are non-zero.

Continued on next page

2.1. Install extras 105

formulas Documentation, Release 0.1.4

Table 53 – continued from previous page
partition Rearranges the elements in the array in such a way

that value of the element in kth position is in the po-
sition it would be in a sorted array.

prod Return the product of the array elements over the
given axis

ptp Peak to peak (maximum - minimum) value along a
given axis.

put Set a.flat[n] = values[n] for all n in in-
dices.

ravel Return a flattened array.
repeat Repeat elements of an array.
reshape Returns an array containing the same data with a new

shape.
resize Change shape and size of array in-place.
round Return a with each element rounded to the given

number of decimals.
searchsorted Find indices where elements of v should be inserted

in a to maintain order.
setfield Put a value into a specified place in a field defined by

a data-type.
setflags Set array flags WRITEABLE, ALIGNED, and UP-

DATEIFCOPY, respectively.
sort Sort an array, in-place.
squeeze Remove single-dimensional entries from the shape

of a.
std Returns the standard deviation of the array elements

along given axis.
sum Return the sum of the array elements over the given

axis.
swapaxes Return a view of the array with axis1 and axis2 in-

terchanged.
take Return an array formed from the elements of a at the

given indices.
tobytes Construct Python bytes containing the raw data bytes

in the array.
tofile Write array to a file as text or binary (default).
tolist Return the array as a (possibly nested) list.
tostring Construct Python bytes containing the raw data bytes

in the array.
trace Return the sum along diagonals of the array.
transpose Returns a view of the array with axes transposed.
var Returns the variance of the array elements, along

given axis.
view New view of array with the same data.

all

IfArray.all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

numpy.all : equivalent function

106 Chapter 2. Installation

formulas Documentation, Release 0.1.4

any

IfArray.any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

numpy.any : equivalent function

argmax

IfArray.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

numpy.argmax : equivalent function

argmin

IfArray.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

numpy.argmin : equivalent function

argpartition

IfArray.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

numpy.argpartition : equivalent function

argsort

IfArray.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

numpy.argsort : equivalent function

astype

IfArray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

dtype [str or dtype] Typecode or data-type to which the array is cast.

2.1. Install extras 107

formulas Documentation, Release 0.1.4

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C order,
‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order
otherwise, and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise the returned
array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is set to false, and
the dtype, order, and subok requirements are satisfied, the input array is returned instead of a copy.

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as the input array,
with dtype, order given by dtype, order.

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

ComplexWarning When casting from complex to float or int. To avoid this, one should use a.real.
astype(t).

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

byteswap

IfArray.byteswap(inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

inplace [bool, optional] If True, swap bytes in-place, default is False.

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']

(continues on next page)

108 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

choose

IfArray.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

numpy.choose : equivalent function

clip

IfArray.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

numpy.clip : equivalent function

collapse

IfArray.collapse(shape)

compress

IfArray.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

numpy.compress : equivalent function

conj

IfArray.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

2.1. Install extras 109

formulas Documentation, Release 0.1.4

conjugate

IfArray.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

copy

IfArray.copy(order=’C’)
Return a copy of the array.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout
of a as closely as possible. (Note that this function and :func:numpy.copy are very similar, but have
different default values for their order= arguments.)

numpy.copy numpy.copyto

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

cumprod

IfArray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

numpy.cumprod : equivalent function

cumsum

IfArray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

110 Chapter 2. Installation

formulas Documentation, Release 0.1.4

numpy.cumsum : equivalent function

diagonal

IfArray.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

numpy.diagonal : equivalent function

dot

IfArray.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

numpy.dot : equivalent function

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],

[2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],

[8., 8.]])

dump

IfArray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

file [str] A string naming the dump file.

dumps

IfArray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

None

fill

IfArray.fill(value)
Fill the array with a scalar value.

2.1. Install extras 111

formulas Documentation, Release 0.1.4

value [scalar] All elements of a will be assigned this value.

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

flatten

IfArray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is
Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the
elements occur in memory. The default is ‘C’.

y [ndarray] A copy of the input array, flattened to one dimension.

ravel : Return a flattened array. flat : A 1-D flat iterator over the array.

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

getfield

IfArray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype
fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view
with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger than that of
the array itself.

offset [int] Number of bytes to skip before beginning the element view.

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

112 Chapter 2. Installation

formulas Documentation, Release 0.1.4

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

item

IfArray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which element
is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which element to
copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument is inter-
preted as an nd-index into the array.

z [Standard Python scalar object] A copy of the specified element of the array as a suitable Python scalar

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

itemset

IfArray.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

2.1. Install extras 113

formulas Documentation, Release 0.1.4

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two arguments: the
last argument is the value to be set and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

max

IfArray.max(axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

numpy.amax : equivalent function

mean

IfArray.mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

numpy.mean : equivalent function

min

IfArray.min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

numpy.amin : equivalent function

newbyteorder

IfArray.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

114 Chapter 2. Installation

formulas Documentation, Release 0.1.4

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

new_order [string, optional] Byte order to force; a value from the byte order specifications below.
new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-insensitive
check on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’ or
‘biggish’ are valid to specify big-endian.

new_arr [array] New array object with the dtype reflecting given change to the byte order.

nonzero

IfArray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

numpy.nonzero : equivalent function

partition

IfArray.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

kth [int or sequence of ints] Element index to partition by. The kth element value will be in its final
sorted position and all smaller elements will be moved before it and all equal or greater elements
behind it. The order all elements in the partitions is undefined. If provided with a sequence of kth
it will partition all elements indexed by kth of them into their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.partition : Return a parititioned copy of an array. argpartition : Indirect partition. sort : Full sort.

See np.partition for notes on the different algorithms.

2.1. Install extras 115

formulas Documentation, Release 0.1.4

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

prod

IfArray.prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

numpy.prod : equivalent function

ptp

IfArray.ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

numpy.ptp : equivalent function

put

IfArray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

numpy.put : equivalent function

ravel

IfArray.ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

numpy.ravel : equivalent function

ndarray.flat : a flat iterator on the array.

repeat

IfArray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

numpy.repeat : equivalent function

116 Chapter 2. Installation

formulas Documentation, Release 0.1.4

reshape

IfArray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

numpy.reshape : equivalent function

resize

IfArray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

None

ValueError If a does not own its own data or references or views to it exist, and the data memory must
be changed.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

resize : Return a new array with the specified shape.

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so
if you are sure that you have not shared the memory for this array with another Python object, then you
may safely set refcheck to False.

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and
reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

2.1. Install extras 117

formulas Documentation, Release 0.1.4

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

round

IfArray.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

numpy.around : equivalent function

searchsorted

IfArray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

numpy.searchsorted : equivalent function

setfield

IfArray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

None

getfield

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)

(continues on next page)

118 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

array([[3, 3, 3],
[3, 3, 3],
[3, 3, 3]])

>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

setflags

IfArray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the
array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or
is a string. (The exception for string is made so that unpickling can be done without copying memory.)

write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the
compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

(continues on next page)

2.1. Install extras 119

formulas Documentation, Release 0.1.4

(continued from previous page)

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set UPDATEIFCOPY flag to True

sort

IfArray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’}, optional] Sorting algorithm. Default is ‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.sort : Return a sorted copy of an array. argsort : Indirect sort. lexsort : Indirect stable sort on
multiple keys. searchsorted : Find elements in sorted array. partition: Partial sort.

See sort for notes on the different sorting algorithms.

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

squeeze

IfArray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

numpy.squeeze : equivalent function

120 Chapter 2. Installation

formulas Documentation, Release 0.1.4

std

IfArray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

numpy.std : equivalent function

sum

IfArray.sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

numpy.sum : equivalent function

swapaxes

IfArray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

numpy.swapaxes : equivalent function

take

IfArray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

numpy.take : equivalent function

tobytes

IfArray.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

2.1. Install extras 121

formulas Documentation, Release 0.1.4

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

tofile

IfArray.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

fid [file or str] An open file object, or a string containing a filename.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written, equivalent
to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by first convert-
ing it to the closest Python type, and then using “format” % item.

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

tolist

IfArray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

none

y [list] The possibly nested list of array elements.

The array may be recreated, a = np.array(a.tolist()).

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

tostring

IfArray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

122 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

trace

IfArray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

numpy.trace : equivalent function

transpose

IfArray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array
into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alterna-
tive to the tuple form)

out [ndarray] View of a, with axes suitably permuted.

ndarray.T : Array property returning the array transposed.

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])

(continues on next page)

2.1. Install extras 123

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

var

IfArray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

numpy.var : equivalent function

view

IfArray.view(dtype=None, type=None)
New view of array with the same data.

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g., float32
or int16. The default, None, results in the view having the same data-type as a. This argument can
also be specified as an ndarray sub-class, which then specifies the type of the returned object (this
is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the default None
results in type preservation.

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s mem-
ory with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an in-
stance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause
a reinterpretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as
a slice or transpose, etc., the view may give different results.

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)

(continues on next page)

124 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

__init__()
Initialize self. See help(type(self)) for accurate signature.

Attributes

2.1. Install extras 125

formulas Documentation, Release 0.1.4

T Same as self.transpose(), except that self is returned
if self.ndim < 2.

base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with

the ctypes module.
data Python buffer object pointing to the start of the ar-

ray’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when

traversing an array.

T

IfArray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])
>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

base

IfArray.base
Base object if memory is from some other object.

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

126 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> y = x[2:]
>>> y.base is x
True

ctypes

IfArray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

None

c [Python object] Possessing attributes data, shape, strides, etc.

numpy.ctypeslib

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

• data: A pointer to the memory area of the array as a Python integer. This memory area may
contain data that is not aligned, or not in correct byte-order. The memory area may not even be
writeable. The array flags and data-type of this array should be respected when passing this attribute
to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of
this attribute is exactly the same as self._array_interface_[‘data’][0].

• shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

• strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for
the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

• data_as(obj): Return the data pointer cast to a particular c-types object. For ex-
ample, calling self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Per-
haps you want to use the data as a pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

• shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

• strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly.
For example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated before the next Python statement. You
can avoid this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a
reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something
useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will
still have the as parameter attribute which will return an integer equal to the data attribute.

2.1. Install extras 127

formulas Documentation, Release 0.1.4

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

data

IfArray.data
Python buffer object pointing to the start of the array’s data.

dtype

IfArray.dtype
Data-type of the array’s elements.

None

d : numpy dtype object

numpy.dtype

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

flags

IfArray.flags
Information about the memory layout of the array.

C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.

F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.

OWNDATA (O) The array owns the memory it uses or borrows it from another object.

128 Chapter 2. Installation

formulas Documentation, Release 0.1.4

WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making it read-
only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a
writeable array may be subsequently locked while the base array remains writeable. (The opposite
is not true, in that a view of a locked array may not be made writeable. However, currently, locking
a base object does not lock any views that already reference it, so under that circumstance it is
possible to alter the contents of a locked array via a previously created writeable view onto it.)
Attempting to change a non-writeable array raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

UPDATEIFCOPY (U) This array is a copy of some other array. When this array is deallocated, the base
array will be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lower-
cased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

• UPDATEIFCOPY can only be set False.

• ALIGNED can only be set True if the data is truly aligned.

• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary
if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that self.
strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0] ==
self.itemsize for Fortran-style contiguous arrays is true.

flat

IfArray.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

flatten : Return a copy of the array collapsed into one dimension.

flatiter

2.1. Install extras 129

formulas Documentation, Release 0.1.4

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

imag

IfArray.imag
The imaginary part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

itemsize

IfArray.itemsize
Length of one array element in bytes.

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

nbytes

IfArray.nbytes
Total bytes consumed by the elements of the array.

Does not include memory consumed by non-element attributes of the array object.

130 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

ndim

IfArray.ndim
Number of array dimensions.

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

real

IfArray.real
The real part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

numpy.real : equivalent function

shape

IfArray.shape
Tuple of array dimensions.

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):

(continues on next page)

2.1. Install extras 131

formulas Documentation, Release 0.1.4

(continued from previous page)

File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

size

IfArray.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

strides

IfArray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

numpy.lib.stride_tricks.as_strided

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))

(continues on next page)

132 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

IfErrorArray

class IfErrorArray

Methods

all Returns True if all elements evaluate to True.
any Returns True if any of the elements of a evaluate to

True.
argmax Return indices of the maximum values along the

given axis.
argmin Return indices of the minimum values along the

given axis of a.
argpartition Returns the indices that would partition this array.
argsort Returns the indices that would sort this array.
astype Copy of the array, cast to a specified type.
byteswap Swap the bytes of the array elements
choose Use an index array to construct a new array from a

set of choices.
clip Return an array whose values are limited to [min,

max].
collapse
compress Return selected slices of this array along given axis.
conj Complex-conjugate all elements.
conjugate Return the complex conjugate, element-wise.
copy Return a copy of the array.
cumprod Return the cumulative product of the elements along

the given axis.
cumsum Return the cumulative sum of the elements along the

given axis.
diagonal Return specified diagonals.
dot Dot product of two arrays.
dump Dump a pickle of the array to the specified file.
dumps Returns the pickle of the array as a string.
fill Fill the array with a scalar value.

Continued on next page

2.1. Install extras 133

formulas Documentation, Release 0.1.4

Table 55 – continued from previous page
flatten Return a copy of the array collapsed into one dimen-

sion.
getfield Returns a field of the given array as a certain type.
item Copy an element of an array to a standard Python

scalar and return it.
itemset Insert scalar into an array (scalar is cast to array’s

dtype, if possible)
max Return the maximum along a given axis.
mean Returns the average of the array elements along

given axis.
min Return the minimum along a given axis.
newbyteorder Return the array with the same data viewed with a

different byte order.
nonzero Return the indices of the elements that are non-zero.
partition Rearranges the elements in the array in such a way

that value of the element in kth position is in the po-
sition it would be in a sorted array.

prod Return the product of the array elements over the
given axis

ptp Peak to peak (maximum - minimum) value along a
given axis.

put Set a.flat[n] = values[n] for all n in in-
dices.

ravel Return a flattened array.
repeat Repeat elements of an array.
reshape Returns an array containing the same data with a new

shape.
resize Change shape and size of array in-place.
round Return a with each element rounded to the given

number of decimals.
searchsorted Find indices where elements of v should be inserted

in a to maintain order.
setfield Put a value into a specified place in a field defined by

a data-type.
setflags Set array flags WRITEABLE, ALIGNED, and UP-

DATEIFCOPY, respectively.
sort Sort an array, in-place.
squeeze Remove single-dimensional entries from the shape

of a.
std Returns the standard deviation of the array elements

along given axis.
sum Return the sum of the array elements over the given

axis.
swapaxes Return a view of the array with axis1 and axis2 in-

terchanged.
take Return an array formed from the elements of a at the

given indices.
tobytes Construct Python bytes containing the raw data bytes

in the array.
tofile Write array to a file as text or binary (default).
tolist Return the array as a (possibly nested) list.

Continued on next page

134 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Table 55 – continued from previous page
tostring Construct Python bytes containing the raw data bytes

in the array.
trace Return the sum along diagonals of the array.
transpose Returns a view of the array with axes transposed.
var Returns the variance of the array elements, along

given axis.
view New view of array with the same data.

all

IfErrorArray.all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

numpy.all : equivalent function

any

IfErrorArray.any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

numpy.any : equivalent function

argmax

IfErrorArray.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

numpy.argmax : equivalent function

argmin

IfErrorArray.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

numpy.argmin : equivalent function

argpartition

IfErrorArray.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

numpy.argpartition : equivalent function

2.1. Install extras 135

formulas Documentation, Release 0.1.4

argsort

IfErrorArray.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

numpy.argsort : equivalent function

astype

IfErrorArray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C order,
‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order
otherwise, and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise the returned
array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is set to false, and
the dtype, order, and subok requirements are satisfied, the input array is returned instead of a copy.

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as the input array,
with dtype, order given by dtype, order.

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

ComplexWarning When casting from complex to float or int. To avoid this, one should use a.real.
astype(t).

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

136 Chapter 2. Installation

formulas Documentation, Release 0.1.4

byteswap

IfErrorArray.byteswap(inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

inplace [bool, optional] If True, swap bytes in-place, default is False.

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

choose

IfErrorArray.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

numpy.choose : equivalent function

clip

IfErrorArray.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

numpy.clip : equivalent function

collapse

IfErrorArray.collapse(shape)

compress

IfErrorArray.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

2.1. Install extras 137

formulas Documentation, Release 0.1.4

Refer to numpy.compress for full documentation.

numpy.compress : equivalent function

conj

IfErrorArray.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

conjugate

IfErrorArray.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

copy

IfErrorArray.copy(order=’C’)
Return a copy of the array.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout
of a as closely as possible. (Note that this function and :func:numpy.copy are very similar, but have
different default values for their order= arguments.)

numpy.copy numpy.copyto

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

138 Chapter 2. Installation

formulas Documentation, Release 0.1.4

cumprod

IfErrorArray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

numpy.cumprod : equivalent function

cumsum

IfErrorArray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

numpy.cumsum : equivalent function

diagonal

IfErrorArray.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

numpy.diagonal : equivalent function

dot

IfErrorArray.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

numpy.dot : equivalent function

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],

[2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],

[8., 8.]])

dump

IfErrorArray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

file [str] A string naming the dump file.

2.1. Install extras 139

formulas Documentation, Release 0.1.4

dumps

IfErrorArray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

None

fill

IfErrorArray.fill(value)
Fill the array with a scalar value.

value [scalar] All elements of a will be assigned this value.

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

flatten

IfErrorArray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is
Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the
elements occur in memory. The default is ‘C’.

y [ndarray] A copy of the input array, flattened to one dimension.

ravel : Return a flattened array. flat : A 1-D flat iterator over the array.

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

getfield

IfErrorArray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype
fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view
with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

140 Chapter 2. Installation

formulas Documentation, Release 0.1.4

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger than that of
the array itself.

offset [int] Number of bytes to skip before beginning the element view.

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

item

IfErrorArray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which element
is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which element to
copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument is inter-
preted as an nd-index into the array.

z [Standard Python scalar object] A copy of the specified element of the array as a suitable Python scalar

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1

(continues on next page)

2.1. Install extras 141

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> x.item((2, 2))
3

itemset

IfErrorArray.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two arguments: the
last argument is the value to be set and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

max

IfErrorArray.max(axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

numpy.amax : equivalent function

mean

IfErrorArray.mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

numpy.mean : equivalent function

142 Chapter 2. Installation

formulas Documentation, Release 0.1.4

min

IfErrorArray.min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

numpy.amin : equivalent function

newbyteorder

IfErrorArray.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

new_order [string, optional] Byte order to force; a value from the byte order specifications below.
new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-insensitive
check on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’ or
‘biggish’ are valid to specify big-endian.

new_arr [array] New array object with the dtype reflecting given change to the byte order.

nonzero

IfErrorArray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

numpy.nonzero : equivalent function

partition

IfErrorArray.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

2.1. Install extras 143

formulas Documentation, Release 0.1.4

kth [int or sequence of ints] Element index to partition by. The kth element value will be in its final
sorted position and all smaller elements will be moved before it and all equal or greater elements
behind it. The order all elements in the partitions is undefined. If provided with a sequence of kth
it will partition all elements indexed by kth of them into their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.partition : Return a parititioned copy of an array. argpartition : Indirect partition. sort : Full sort.

See np.partition for notes on the different algorithms.

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

prod

IfErrorArray.prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

numpy.prod : equivalent function

ptp

IfErrorArray.ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

numpy.ptp : equivalent function

put

IfErrorArray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

numpy.put : equivalent function

144 Chapter 2. Installation

formulas Documentation, Release 0.1.4

ravel

IfErrorArray.ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

numpy.ravel : equivalent function

ndarray.flat : a flat iterator on the array.

repeat

IfErrorArray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

numpy.repeat : equivalent function

reshape

IfErrorArray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

numpy.reshape : equivalent function

resize

IfErrorArray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

None

ValueError If a does not own its own data or references or views to it exist, and the data memory must
be changed.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

resize : Return a new array with the specified shape.

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so
if you are sure that you have not shared the memory for this array with another Python object, then you
may safely set refcheck to False.

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and
reshaped:

2.1. Install extras 145

formulas Documentation, Release 0.1.4

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

round

IfErrorArray.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

numpy.around : equivalent function

searchsorted

IfErrorArray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

numpy.searchsorted : equivalent function

146 Chapter 2. Installation

formulas Documentation, Release 0.1.4

setfield

IfErrorArray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

None

getfield

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

setflags

IfErrorArray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the
array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or
is a string. (The exception for string is made so that unpickling can be done without copying memory.)

write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

2.1. Install extras 147

formulas Documentation, Release 0.1.4

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the
compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set UPDATEIFCOPY flag to True

sort

IfErrorArray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’}, optional] Sorting algorithm. Default is ‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.sort : Return a sorted copy of an array. argsort : Indirect sort. lexsort : Indirect stable sort on
multiple keys. searchsorted : Find elements in sorted array. partition: Partial sort.

See sort for notes on the different sorting algorithms.

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a

(continues on next page)

148 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

array([[1, 3],
[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

squeeze

IfErrorArray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

numpy.squeeze : equivalent function

std

IfErrorArray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

numpy.std : equivalent function

sum

IfErrorArray.sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

numpy.sum : equivalent function

swapaxes

IfErrorArray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

numpy.swapaxes : equivalent function

take

IfErrorArray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

2.1. Install extras 149

formulas Documentation, Release 0.1.4

numpy.take : equivalent function

tobytes

IfErrorArray.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

tofile

IfErrorArray.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

fid [file or str] An open file object, or a string containing a filename.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written, equivalent
to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by first convert-
ing it to the closest Python type, and then using “format” % item.

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

tolist

IfErrorArray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

none

150 Chapter 2. Installation

formulas Documentation, Release 0.1.4

y [list] The possibly nested list of array elements.

The array may be recreated, a = np.array(a.tolist()).

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

tostring

IfErrorArray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

trace

IfErrorArray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

numpy.trace : equivalent function

transpose

IfErrorArray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array
into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided

2.1. Install extras 151

formulas Documentation, Release 0.1.4

and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alterna-
tive to the tuple form)

out [ndarray] View of a, with axes suitably permuted.

ndarray.T : Array property returning the array transposed.

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

var

IfErrorArray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

numpy.var : equivalent function

view

IfErrorArray.view(dtype=None, type=None)
New view of array with the same data.

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g., float32
or int16. The default, None, results in the view having the same data-type as a. This argument can
also be specified as an ndarray sub-class, which then specifies the type of the returned object (this
is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the default None
results in type preservation.

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s mem-
ory with a different data-type. This can cause a reinterpretation of the bytes of memory.

152 Chapter 2. Installation

formulas Documentation, Release 0.1.4

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an in-
stance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause
a reinterpretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as
a slice or transpose, etc., the view may give different results.

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])

(continues on next page)

2.1. Install extras 153

formulas Documentation, Release 0.1.4

(continued from previous page)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

__init__()
Initialize self. See help(type(self)) for accurate signature.

Attributes

T Same as self.transpose(), except that self is returned
if self.ndim < 2.

base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with

the ctypes module.
data Python buffer object pointing to the start of the ar-

ray’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when

traversing an array.

T

IfErrorArray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])
>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

154 Chapter 2. Installation

formulas Documentation, Release 0.1.4

base

IfErrorArray.base
Base object if memory is from some other object.

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

ctypes

IfErrorArray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

None

c [Python object] Possessing attributes data, shape, strides, etc.

numpy.ctypeslib

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

• data: A pointer to the memory area of the array as a Python integer. This memory area may
contain data that is not aligned, or not in correct byte-order. The memory area may not even be
writeable. The array flags and data-type of this array should be respected when passing this attribute
to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of
this attribute is exactly the same as self._array_interface_[‘data’][0].

• shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

• strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for
the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

• data_as(obj): Return the data pointer cast to a particular c-types object. For ex-
ample, calling self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Per-
haps you want to use the data as a pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

• shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

2.1. Install extras 155

formulas Documentation, Release 0.1.4

• strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly.
For example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated before the next Python statement. You
can avoid this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a
reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something
useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will
still have the as parameter attribute which will return an integer equal to the data attribute.

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

data

IfErrorArray.data
Python buffer object pointing to the start of the array’s data.

dtype

IfErrorArray.dtype
Data-type of the array’s elements.

None

d : numpy dtype object

numpy.dtype

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')

(continues on next page)

156 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> type(x.dtype)
<type 'numpy.dtype'>

flags

IfErrorArray.flags
Information about the memory layout of the array.

C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.

F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.

OWNDATA (O) The array owns the memory it uses or borrows it from another object.

WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making it read-
only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a
writeable array may be subsequently locked while the base array remains writeable. (The opposite
is not true, in that a view of a locked array may not be made writeable. However, currently, locking
a base object does not lock any views that already reference it, so under that circumstance it is
possible to alter the contents of a locked array via a previously created writeable view onto it.)
Attempting to change a non-writeable array raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

UPDATEIFCOPY (U) This array is a copy of some other array. When this array is deallocated, the base
array will be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lower-
cased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

• UPDATEIFCOPY can only be set False.

• ALIGNED can only be set True if the data is truly aligned.

• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary
if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that self.
strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0] ==
self.itemsize for Fortran-style contiguous arrays is true.

2.1. Install extras 157

formulas Documentation, Release 0.1.4

flat

IfErrorArray.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

flatten : Return a copy of the array collapsed into one dimension.

flatiter

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

imag

IfErrorArray.imag
The imaginary part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

itemsize

IfErrorArray.itemsize
Length of one array element in bytes.

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize

(continues on next page)

158 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

nbytes

IfErrorArray.nbytes
Total bytes consumed by the elements of the array.

Does not include memory consumed by non-element attributes of the array object.

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

ndim

IfErrorArray.ndim
Number of array dimensions.

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

real

IfErrorArray.real
The real part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

numpy.real : equivalent function

shape

IfErrorArray.shape
Tuple of array dimensions.

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

2.1. Install extras 159

formulas Documentation, Release 0.1.4

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged

size

IfErrorArray.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

strides

IfErrorArray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

numpy.lib.stride_tricks.as_strided

160 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

look

Python equivalents of lookup and reference Excel functions.

Functions

xcolumn
xlookup
xmatch
xrow

xcolumn

xcolumn(cell=None, ref=None)

xlookup

xlookup(lookup_val, lookup_vec, result_vec=None, match_type=1)

xmatch

xmatch(lookup_value, lookup_array, match_type=1)

2.1. Install extras 161

formulas Documentation, Release 0.1.4

xrow

xrow(cell=None, ref=None)

math

Python equivalents of math and trigonometry Excel functions.

Functions

xarabic
xarctan2
xceiling
xceiling_math
xcot
xdecimal
xeven
xfact
xfactdouble
xmod
xmround
xodd
xpower
xrandbetween
xroman
xround
xsrqtpi
xsum
xsumproduct

xarabic

xarabic(text)

xarctan2

xarctan2(x, y)

xceiling

xceiling(num, sig, ceil=<built-in function ceil>, dfl=0)

xceiling_math

xceiling_math(num, sig=None, mode=0, ceil=<built-in function ceil>)

162 Chapter 2. Installation

formulas Documentation, Release 0.1.4

xcot

xcot(x, func=<ufunc ’tan’>)

xdecimal

xdecimal(text, radix)

xeven

xeven(x)

xfact

xfact(number, fact=<built-in function factorial>, limit=0)

xfactdouble

xfactdouble(number)

xmod

xmod(x, y)

xmround

xmround(*args)

xodd

xodd(x)

xpower

xpower(number, power)

xrandbetween

xrandbetween(bottom, top)

xroman

xroman(num, form=0)

2.1. Install extras 163

formulas Documentation, Release 0.1.4

xround

xround(x, d, func=<built-in function round>)

xsrqtpi

xsrqtpi(number)

xsum

xsum(*args)

xsumproduct

xsumproduct(*args)

operators

Python equivalents of Excel operators.

Functions

logic_input_parser
logic_wrap Helps call a numpy universal function (ufunc).
numeric_wrap Helps call a numpy universal function (ufunc).

logic_input_parser

logic_input_parser(x, y)

logic_wrap

logic_wrap(func, *, input_parser=<function logic_input_parser>, check_error=<function get_error>,
args_parser=<function <lambda>>, otype=<function <lambda>>, ranges=False, **kw)

Helps call a numpy universal function (ufunc).

numeric_wrap

numeric_wrap(func, input_parser=<function <lambda>>, check_error=<function get_error>,
args_parser=<function <lambda>>, *, otype=<function <lambda>>, ranges=False,
**kw)

Helps call a numpy universal function (ufunc).

164 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Classes

OperatorArray

OperatorArray

class OperatorArray

Methods

all Returns True if all elements evaluate to True.
any Returns True if any of the elements of a evaluate to

True.
argmax Return indices of the maximum values along the

given axis.
argmin Return indices of the minimum values along the

given axis of a.
argpartition Returns the indices that would partition this array.
argsort Returns the indices that would sort this array.
astype Copy of the array, cast to a specified type.
byteswap Swap the bytes of the array elements
choose Use an index array to construct a new array from a

set of choices.
clip Return an array whose values are limited to [min,

max].
collapse
compress Return selected slices of this array along given axis.
conj Complex-conjugate all elements.
conjugate Return the complex conjugate, element-wise.
copy Return a copy of the array.
cumprod Return the cumulative product of the elements along

the given axis.
cumsum Return the cumulative sum of the elements along the

given axis.
diagonal Return specified diagonals.
dot Dot product of two arrays.
dump Dump a pickle of the array to the specified file.
dumps Returns the pickle of the array as a string.
fill Fill the array with a scalar value.
flatten Return a copy of the array collapsed into one dimen-

sion.
getfield Returns a field of the given array as a certain type.
item Copy an element of an array to a standard Python

scalar and return it.
itemset Insert scalar into an array (scalar is cast to array’s

dtype, if possible)
max Return the maximum along a given axis.
mean Returns the average of the array elements along

given axis.
Continued on next page

2.1. Install extras 165

formulas Documentation, Release 0.1.4

Table 61 – continued from previous page
min Return the minimum along a given axis.
newbyteorder Return the array with the same data viewed with a

different byte order.
nonzero Return the indices of the elements that are non-zero.
partition Rearranges the elements in the array in such a way

that value of the element in kth position is in the po-
sition it would be in a sorted array.

prod Return the product of the array elements over the
given axis

ptp Peak to peak (maximum - minimum) value along a
given axis.

put Set a.flat[n] = values[n] for all n in in-
dices.

ravel Return a flattened array.
repeat Repeat elements of an array.
reshape Returns an array containing the same data with a new

shape.
resize Change shape and size of array in-place.
round Return a with each element rounded to the given

number of decimals.
searchsorted Find indices where elements of v should be inserted

in a to maintain order.
setfield Put a value into a specified place in a field defined by

a data-type.
setflags Set array flags WRITEABLE, ALIGNED, and UP-

DATEIFCOPY, respectively.
sort Sort an array, in-place.
squeeze Remove single-dimensional entries from the shape

of a.
std Returns the standard deviation of the array elements

along given axis.
sum Return the sum of the array elements over the given

axis.
swapaxes Return a view of the array with axis1 and axis2 in-

terchanged.
take Return an array formed from the elements of a at the

given indices.
tobytes Construct Python bytes containing the raw data bytes

in the array.
tofile Write array to a file as text or binary (default).
tolist Return the array as a (possibly nested) list.
tostring Construct Python bytes containing the raw data bytes

in the array.
trace Return the sum along diagonals of the array.
transpose Returns a view of the array with axes transposed.
var Returns the variance of the array elements, along

given axis.
view New view of array with the same data.

166 Chapter 2. Installation

formulas Documentation, Release 0.1.4

all

OperatorArray.all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

numpy.all : equivalent function

any

OperatorArray.any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

numpy.any : equivalent function

argmax

OperatorArray.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

numpy.argmax : equivalent function

argmin

OperatorArray.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

numpy.argmin : equivalent function

argpartition

OperatorArray.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

numpy.argpartition : equivalent function

argsort

OperatorArray.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

numpy.argsort : equivalent function

2.1. Install extras 167

formulas Documentation, Release 0.1.4

astype

OperatorArray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C order,
‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order
otherwise, and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise the returned
array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is set to false, and
the dtype, order, and subok requirements are satisfied, the input array is returned instead of a copy.

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as the input array,
with dtype, order given by dtype, order.

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

ComplexWarning When casting from complex to float or int. To avoid this, one should use a.real.
astype(t).

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

byteswap

OperatorArray.byteswap(inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

inplace [bool, optional] If True, swap bytes in-place, default is False.

168 Chapter 2. Installation

formulas Documentation, Release 0.1.4

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

choose

OperatorArray.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

numpy.choose : equivalent function

clip

OperatorArray.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

numpy.clip : equivalent function

collapse

OperatorArray.collapse(shape)

compress

OperatorArray.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

numpy.compress : equivalent function

conj

OperatorArray.conj()
Complex-conjugate all elements.

2.1. Install extras 169

formulas Documentation, Release 0.1.4

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

conjugate

OperatorArray.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

copy

OperatorArray.copy(order=’C’)
Return a copy of the array.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout
of a as closely as possible. (Note that this function and :func:numpy.copy are very similar, but have
different default values for their order= arguments.)

numpy.copy numpy.copyto

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

cumprod

OperatorArray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

numpy.cumprod : equivalent function

170 Chapter 2. Installation

formulas Documentation, Release 0.1.4

cumsum

OperatorArray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

numpy.cumsum : equivalent function

diagonal

OperatorArray.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

numpy.diagonal : equivalent function

dot

OperatorArray.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

numpy.dot : equivalent function

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],

[2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],

[8., 8.]])

dump

OperatorArray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

file [str] A string naming the dump file.

dumps

OperatorArray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

None

2.1. Install extras 171

formulas Documentation, Release 0.1.4

fill

OperatorArray.fill(value)
Fill the array with a scalar value.

value [scalar] All elements of a will be assigned this value.

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

flatten

OperatorArray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is
Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the
elements occur in memory. The default is ‘C’.

y [ndarray] A copy of the input array, flattened to one dimension.

ravel : Return a flattened array. flat : A 1-D flat iterator over the array.

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

getfield

OperatorArray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype
fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view
with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger than that of
the array itself.

offset [int] Number of bytes to skip before beginning the element view.

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x

(continues on next page)

172 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

array([[1.+1.j, 0.+0.j],
[0.+0.j, 2.+4.j]])

>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

item

OperatorArray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which element
is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which element to
copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument is inter-
preted as an nd-index into the array.

z [Standard Python scalar object] A copy of the specified element of the array as a suitable Python scalar

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

2.1. Install extras 173

formulas Documentation, Release 0.1.4

itemset

OperatorArray.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two arguments: the
last argument is the value to be set and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

max

OperatorArray.max(axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

numpy.amax : equivalent function

mean

OperatorArray.mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

numpy.mean : equivalent function

min

OperatorArray.min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

numpy.amin : equivalent function

174 Chapter 2. Installation

formulas Documentation, Release 0.1.4

newbyteorder

OperatorArray.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

new_order [string, optional] Byte order to force; a value from the byte order specifications below.
new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-insensitive
check on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’ or
‘biggish’ are valid to specify big-endian.

new_arr [array] New array object with the dtype reflecting given change to the byte order.

nonzero

OperatorArray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

numpy.nonzero : equivalent function

partition

OperatorArray.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

kth [int or sequence of ints] Element index to partition by. The kth element value will be in its final
sorted position and all smaller elements will be moved before it and all equal or greater elements
behind it. The order all elements in the partitions is undefined. If provided with a sequence of kth
it will partition all elements indexed by kth of them into their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

2.1. Install extras 175

formulas Documentation, Release 0.1.4

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.partition : Return a parititioned copy of an array. argpartition : Indirect partition. sort : Full sort.

See np.partition for notes on the different algorithms.

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

prod

OperatorArray.prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

numpy.prod : equivalent function

ptp

OperatorArray.ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

numpy.ptp : equivalent function

put

OperatorArray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

numpy.put : equivalent function

ravel

OperatorArray.ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

numpy.ravel : equivalent function

ndarray.flat : a flat iterator on the array.

176 Chapter 2. Installation

formulas Documentation, Release 0.1.4

repeat

OperatorArray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

numpy.repeat : equivalent function

reshape

OperatorArray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

numpy.reshape : equivalent function

resize

OperatorArray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

None

ValueError If a does not own its own data or references or views to it exist, and the data memory must
be changed.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

resize : Return a new array with the specified shape.

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so
if you are sure that you have not shared the memory for this array with another Python object, then you
may safely set refcheck to False.

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and
reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

2.1. Install extras 177

formulas Documentation, Release 0.1.4

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

round

OperatorArray.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

numpy.around : equivalent function

searchsorted

OperatorArray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

numpy.searchsorted : equivalent function

setfield

OperatorArray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

178 Chapter 2. Installation

formulas Documentation, Release 0.1.4

None

getfield

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

setflags

OperatorArray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the
array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or
is a string. (The exception for string is made so that unpickling can be done without copying memory.)

write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the
compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

(continues on next page)

2.1. Install extras 179

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set UPDATEIFCOPY flag to True

sort

OperatorArray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’}, optional] Sorting algorithm. Default is ‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.sort : Return a sorted copy of an array. argsort : Indirect sort. lexsort : Indirect stable sort on
multiple keys. searchsorted : Find elements in sorted array. partition: Partial sort.

See sort for notes on the different sorting algorithms.

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

180 Chapter 2. Installation

formulas Documentation, Release 0.1.4

squeeze

OperatorArray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

numpy.squeeze : equivalent function

std

OperatorArray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

numpy.std : equivalent function

sum

OperatorArray.sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

numpy.sum : equivalent function

swapaxes

OperatorArray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

numpy.swapaxes : equivalent function

take

OperatorArray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

numpy.take : equivalent function

tobytes

OperatorArray.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

2.1. Install extras 181

formulas Documentation, Release 0.1.4

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

tofile

OperatorArray.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

fid [file or str] An open file object, or a string containing a filename.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written, equivalent
to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by first convert-
ing it to the closest Python type, and then using “format” % item.

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

tolist

OperatorArray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

none

y [list] The possibly nested list of array elements.

The array may be recreated, a = np.array(a.tolist()).

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

182 Chapter 2. Installation

formulas Documentation, Release 0.1.4

tostring

OperatorArray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

trace

OperatorArray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

numpy.trace : equivalent function

transpose

OperatorArray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array
into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alterna-
tive to the tuple form)

out [ndarray] View of a, with axes suitably permuted.

ndarray.T : Array property returning the array transposed.

2.1. Install extras 183

formulas Documentation, Release 0.1.4

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

var

OperatorArray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

numpy.var : equivalent function

view

OperatorArray.view(dtype=None, type=None)
New view of array with the same data.

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g., float32
or int16. The default, None, results in the view having the same data-type as a. This argument can
also be specified as an ndarray sub-class, which then specifies the type of the returned object (this
is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the default None
results in type preservation.

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s mem-
ory with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an in-
stance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause
a reinterpretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as
a slice or transpose, etc., the view may give different results.

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

184 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

__init__()
Initialize self. See help(type(self)) for accurate signature.

Attributes

2.1. Install extras 185

formulas Documentation, Release 0.1.4

T Same as self.transpose(), except that self is returned
if self.ndim < 2.

base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with

the ctypes module.
data Python buffer object pointing to the start of the ar-

ray’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when

traversing an array.

T

OperatorArray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])
>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

base

OperatorArray.base
Base object if memory is from some other object.

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

186 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> y = x[2:]
>>> y.base is x
True

ctypes

OperatorArray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

None

c [Python object] Possessing attributes data, shape, strides, etc.

numpy.ctypeslib

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

• data: A pointer to the memory area of the array as a Python integer. This memory area may
contain data that is not aligned, or not in correct byte-order. The memory area may not even be
writeable. The array flags and data-type of this array should be respected when passing this attribute
to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of
this attribute is exactly the same as self._array_interface_[‘data’][0].

• shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

• strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for
the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

• data_as(obj): Return the data pointer cast to a particular c-types object. For ex-
ample, calling self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Per-
haps you want to use the data as a pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

• shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

• strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly.
For example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated before the next Python statement. You
can avoid this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a
reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something
useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will
still have the as parameter attribute which will return an integer equal to the data attribute.

2.1. Install extras 187

formulas Documentation, Release 0.1.4

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

data

OperatorArray.data
Python buffer object pointing to the start of the array’s data.

dtype

OperatorArray.dtype
Data-type of the array’s elements.

None

d : numpy dtype object

numpy.dtype

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

flags

OperatorArray.flags
Information about the memory layout of the array.

C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.

F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.

OWNDATA (O) The array owns the memory it uses or borrows it from another object.

188 Chapter 2. Installation

formulas Documentation, Release 0.1.4

WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making it read-
only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a
writeable array may be subsequently locked while the base array remains writeable. (The opposite
is not true, in that a view of a locked array may not be made writeable. However, currently, locking
a base object does not lock any views that already reference it, so under that circumstance it is
possible to alter the contents of a locked array via a previously created writeable view onto it.)
Attempting to change a non-writeable array raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

UPDATEIFCOPY (U) This array is a copy of some other array. When this array is deallocated, the base
array will be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lower-
cased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

• UPDATEIFCOPY can only be set False.

• ALIGNED can only be set True if the data is truly aligned.

• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary
if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that self.
strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0] ==
self.itemsize for Fortran-style contiguous arrays is true.

flat

OperatorArray.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

flatten : Return a copy of the array collapsed into one dimension.

flatiter

2.1. Install extras 189

formulas Documentation, Release 0.1.4

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

imag

OperatorArray.imag
The imaginary part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

itemsize

OperatorArray.itemsize
Length of one array element in bytes.

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

nbytes

OperatorArray.nbytes
Total bytes consumed by the elements of the array.

Does not include memory consumed by non-element attributes of the array object.

190 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

ndim

OperatorArray.ndim
Number of array dimensions.

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

real

OperatorArray.real
The real part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

numpy.real : equivalent function

shape

OperatorArray.shape
Tuple of array dimensions.

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):

(continues on next page)

2.1. Install extras 191

formulas Documentation, Release 0.1.4

(continued from previous page)

File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

size

OperatorArray.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

strides

OperatorArray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

numpy.lib.stride_tricks.as_strided

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))

(continues on next page)

192 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

stat

Python equivalents of statistical Excel functions.

Functions

xaverage
xmax
xmin

xaverage

xaverage(*args)

xmax

xmax(*args)

xmin

xmin(*args)

text

Python equivalents of text Excel functions.

Functions

xfind
xleft
xmid

Continued on next page

2.1. Install extras 193

formulas Documentation, Release 0.1.4

Table 64 – continued from previous page
xreplace
xright

xfind

xfind(find_text, within_text, start_num=1)

xleft

xleft(from_str, num_chars)

xmid

xmid(from_str, start_num, num_chars)

xreplace

xreplace(old_text, start_num, num_chars, new_text)

xright

xright(from_str, num_chars)

Classes

TrimArray

TrimArray

class TrimArray

Methods

all Returns True if all elements evaluate to True.
any Returns True if any of the elements of a evaluate to

True.
argmax Return indices of the maximum values along the

given axis.
argmin Return indices of the minimum values along the

given axis of a.
argpartition Returns the indices that would partition this array.
argsort Returns the indices that would sort this array.
astype Copy of the array, cast to a specified type.
byteswap Swap the bytes of the array elements

Continued on next page

194 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Table 66 – continued from previous page
choose Use an index array to construct a new array from a

set of choices.
clip Return an array whose values are limited to [min,

max].
collapse
compress Return selected slices of this array along given axis.
conj Complex-conjugate all elements.
conjugate Return the complex conjugate, element-wise.
copy Return a copy of the array.
cumprod Return the cumulative product of the elements along

the given axis.
cumsum Return the cumulative sum of the elements along the

given axis.
diagonal Return specified diagonals.
dot Dot product of two arrays.
dump Dump a pickle of the array to the specified file.
dumps Returns the pickle of the array as a string.
fill Fill the array with a scalar value.
flatten Return a copy of the array collapsed into one dimen-

sion.
getfield Returns a field of the given array as a certain type.
item Copy an element of an array to a standard Python

scalar and return it.
itemset Insert scalar into an array (scalar is cast to array’s

dtype, if possible)
max Return the maximum along a given axis.
mean Returns the average of the array elements along

given axis.
min Return the minimum along a given axis.
newbyteorder Return the array with the same data viewed with a

different byte order.
nonzero Return the indices of the elements that are non-zero.
partition Rearranges the elements in the array in such a way

that value of the element in kth position is in the po-
sition it would be in a sorted array.

prod Return the product of the array elements over the
given axis

ptp Peak to peak (maximum - minimum) value along a
given axis.

put Set a.flat[n] = values[n] for all n in in-
dices.

ravel Return a flattened array.
repeat Repeat elements of an array.
reshape Returns an array containing the same data with a new

shape.
resize Change shape and size of array in-place.
round Return a with each element rounded to the given

number of decimals.
searchsorted Find indices where elements of v should be inserted

in a to maintain order.
Continued on next page

2.1. Install extras 195

formulas Documentation, Release 0.1.4

Table 66 – continued from previous page
setfield Put a value into a specified place in a field defined by

a data-type.
setflags Set array flags WRITEABLE, ALIGNED, and UP-

DATEIFCOPY, respectively.
sort Sort an array, in-place.
squeeze Remove single-dimensional entries from the shape

of a.
std Returns the standard deviation of the array elements

along given axis.
sum Return the sum of the array elements over the given

axis.
swapaxes Return a view of the array with axis1 and axis2 in-

terchanged.
take Return an array formed from the elements of a at the

given indices.
tobytes Construct Python bytes containing the raw data bytes

in the array.
tofile Write array to a file as text or binary (default).
tolist Return the array as a (possibly nested) list.
tostring Construct Python bytes containing the raw data bytes

in the array.
trace Return the sum along diagonals of the array.
transpose Returns a view of the array with axes transposed.
var Returns the variance of the array elements, along

given axis.
view New view of array with the same data.

all

TrimArray.all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

numpy.all : equivalent function

any

TrimArray.any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

numpy.any : equivalent function

argmax

TrimArray.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

numpy.argmax : equivalent function

196 Chapter 2. Installation

formulas Documentation, Release 0.1.4

argmin

TrimArray.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

numpy.argmin : equivalent function

argpartition

TrimArray.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

numpy.argpartition : equivalent function

argsort

TrimArray.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

numpy.argsort : equivalent function

astype

TrimArray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C order,
‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order
otherwise, and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise the returned
array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is set to false, and
the dtype, order, and subok requirements are satisfied, the input array is returned instead of a copy.

2.1. Install extras 197

formulas Documentation, Release 0.1.4

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as the input array,
with dtype, order given by dtype, order.

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

ComplexWarning When casting from complex to float or int. To avoid this, one should use a.real.
astype(t).

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

byteswap

TrimArray.byteswap(inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

inplace [bool, optional] If True, swap bytes in-place, default is False.

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

choose

TrimArray.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

numpy.choose : equivalent function

198 Chapter 2. Installation

formulas Documentation, Release 0.1.4

clip

TrimArray.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

numpy.clip : equivalent function

collapse

TrimArray.collapse(shape)

compress

TrimArray.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

numpy.compress : equivalent function

conj

TrimArray.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

conjugate

TrimArray.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

copy

TrimArray.copy(order=’C’)
Return a copy of the array.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout
of a as closely as possible. (Note that this function and :func:numpy.copy are very similar, but have
different default values for their order= arguments.)

numpy.copy numpy.copyto

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

2.1. Install extras 199

formulas Documentation, Release 0.1.4

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

cumprod

TrimArray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

numpy.cumprod : equivalent function

cumsum

TrimArray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

numpy.cumsum : equivalent function

diagonal

TrimArray.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

numpy.diagonal : equivalent function

dot

TrimArray.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

numpy.dot : equivalent function

200 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],

[2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],

[8., 8.]])

dump

TrimArray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

file [str] A string naming the dump file.

dumps

TrimArray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

None

fill

TrimArray.fill(value)
Fill the array with a scalar value.

value [scalar] All elements of a will be assigned this value.

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

flatten

TrimArray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is
Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the
elements occur in memory. The default is ‘C’.

2.1. Install extras 201

formulas Documentation, Release 0.1.4

y [ndarray] A copy of the input array, flattened to one dimension.

ravel : Return a flattened array. flat : A 1-D flat iterator over the array.

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

getfield

TrimArray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype
fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view
with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger than that of
the array itself.

offset [int] Number of bytes to skip before beginning the element view.

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

item

TrimArray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which element
is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which element to
copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument is inter-
preted as an nd-index into the array.

202 Chapter 2. Installation

formulas Documentation, Release 0.1.4

z [Standard Python scalar object] A copy of the specified element of the array as a suitable Python scalar

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

itemset

TrimArray.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two arguments: the
last argument is the value to be set and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

2.1. Install extras 203

formulas Documentation, Release 0.1.4

max

TrimArray.max(axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

numpy.amax : equivalent function

mean

TrimArray.mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

numpy.mean : equivalent function

min

TrimArray.min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

numpy.amin : equivalent function

newbyteorder

TrimArray.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

new_order [string, optional] Byte order to force; a value from the byte order specifications below.
new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-insensitive
check on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’ or
‘biggish’ are valid to specify big-endian.

new_arr [array] New array object with the dtype reflecting given change to the byte order.

204 Chapter 2. Installation

formulas Documentation, Release 0.1.4

nonzero

TrimArray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

numpy.nonzero : equivalent function

partition

TrimArray.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

kth [int or sequence of ints] Element index to partition by. The kth element value will be in its final
sorted position and all smaller elements will be moved before it and all equal or greater elements
behind it. The order all elements in the partitions is undefined. If provided with a sequence of kth
it will partition all elements indexed by kth of them into their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.partition : Return a parititioned copy of an array. argpartition : Indirect partition. sort : Full sort.

See np.partition for notes on the different algorithms.

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

prod

TrimArray.prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

numpy.prod : equivalent function

2.1. Install extras 205

formulas Documentation, Release 0.1.4

ptp

TrimArray.ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

numpy.ptp : equivalent function

put

TrimArray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

numpy.put : equivalent function

ravel

TrimArray.ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

numpy.ravel : equivalent function

ndarray.flat : a flat iterator on the array.

repeat

TrimArray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

numpy.repeat : equivalent function

reshape

TrimArray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

numpy.reshape : equivalent function

resize

TrimArray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

206 Chapter 2. Installation

formulas Documentation, Release 0.1.4

None

ValueError If a does not own its own data or references or views to it exist, and the data memory must
be changed.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

resize : Return a new array with the specified shape.

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so
if you are sure that you have not shared the memory for this array with another Python object, then you
may safely set refcheck to False.

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and
reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

2.1. Install extras 207

formulas Documentation, Release 0.1.4

round

TrimArray.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

numpy.around : equivalent function

searchsorted

TrimArray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

numpy.searchsorted : equivalent function

setfield

TrimArray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

None

getfield

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

208 Chapter 2. Installation

formulas Documentation, Release 0.1.4

setflags

TrimArray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the
array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or
is a string. (The exception for string is made so that unpickling can be done without copying memory.)

write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the
compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set UPDATEIFCOPY flag to True

sort

TrimArray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

2.1. Install extras 209

formulas Documentation, Release 0.1.4

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’}, optional] Sorting algorithm. Default is ‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.sort : Return a sorted copy of an array. argsort : Indirect sort. lexsort : Indirect stable sort on
multiple keys. searchsorted : Find elements in sorted array. partition: Partial sort.

See sort for notes on the different sorting algorithms.

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

squeeze

TrimArray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

numpy.squeeze : equivalent function

std

TrimArray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

numpy.std : equivalent function

sum

TrimArray.sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

210 Chapter 2. Installation

formulas Documentation, Release 0.1.4

numpy.sum : equivalent function

swapaxes

TrimArray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

numpy.swapaxes : equivalent function

take

TrimArray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

numpy.take : equivalent function

tobytes

TrimArray.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

tofile

TrimArray.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

fid [file or str] An open file object, or a string containing a filename.

2.1. Install extras 211

formulas Documentation, Release 0.1.4

sep [str] Separator between array items for text output. If “” (empty), a binary file is written, equivalent
to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by first convert-
ing it to the closest Python type, and then using “format” % item.

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

tolist

TrimArray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

none

y [list] The possibly nested list of array elements.

The array may be recreated, a = np.array(a.tolist()).

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

tostring

TrimArray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

212 Chapter 2. Installation

formulas Documentation, Release 0.1.4

trace

TrimArray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

numpy.trace : equivalent function

transpose

TrimArray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array
into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alterna-
tive to the tuple form)

out [ndarray] View of a, with axes suitably permuted.

ndarray.T : Array property returning the array transposed.

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

var

TrimArray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

numpy.var : equivalent function

2.1. Install extras 213

formulas Documentation, Release 0.1.4

view

TrimArray.view(dtype=None, type=None)
New view of array with the same data.

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g., float32
or int16. The default, None, results in the view having the same data-type as a. This argument can
also be specified as an ndarray sub-class, which then specifies the type of the returned object (this
is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the default None
results in type preservation.

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s mem-
ory with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an in-
stance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause
a reinterpretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as
a slice or transpose, etc., the view may give different results.

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

214 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

__init__()
Initialize self. See help(type(self)) for accurate signature.

Attributes

T Same as self.transpose(), except that self is returned
if self.ndim < 2.

base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with

the ctypes module.
data Python buffer object pointing to the start of the ar-

ray’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when

traversing an array.

T

TrimArray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

2.1. Install extras 215

formulas Documentation, Release 0.1.4

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])
>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

base

TrimArray.base
Base object if memory is from some other object.

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

ctypes

TrimArray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

None

c [Python object] Possessing attributes data, shape, strides, etc.

numpy.ctypeslib

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

• data: A pointer to the memory area of the array as a Python integer. This memory area may
contain data that is not aligned, or not in correct byte-order. The memory area may not even be
writeable. The array flags and data-type of this array should be respected when passing this attribute
to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of
this attribute is exactly the same as self._array_interface_[‘data’][0].

• shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong

216 Chapter 2. Installation

formulas Documentation, Release 0.1.4

depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

• strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for
the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

• data_as(obj): Return the data pointer cast to a particular c-types object. For ex-
ample, calling self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Per-
haps you want to use the data as a pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

• shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

• strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly.
For example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated before the next Python statement. You
can avoid this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a
reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something
useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will
still have the as parameter attribute which will return an integer equal to the data attribute.

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

data

TrimArray.data
Python buffer object pointing to the start of the array’s data.

2.1. Install extras 217

formulas Documentation, Release 0.1.4

dtype

TrimArray.dtype
Data-type of the array’s elements.

None

d : numpy dtype object

numpy.dtype

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

flags

TrimArray.flags
Information about the memory layout of the array.

C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.

F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.

OWNDATA (O) The array owns the memory it uses or borrows it from another object.

WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making it read-
only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a
writeable array may be subsequently locked while the base array remains writeable. (The opposite
is not true, in that a view of a locked array may not be made writeable. However, currently, locking
a base object does not lock any views that already reference it, so under that circumstance it is
possible to alter the contents of a locked array via a previously created writeable view onto it.)
Attempting to change a non-writeable array raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

UPDATEIFCOPY (U) This array is a copy of some other array. When this array is deallocated, the base
array will be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lower-
cased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

218 Chapter 2. Installation

formulas Documentation, Release 0.1.4

• UPDATEIFCOPY can only be set False.

• ALIGNED can only be set True if the data is truly aligned.

• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary
if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that self.
strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0] ==
self.itemsize for Fortran-style contiguous arrays is true.

flat

TrimArray.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

flatten : Return a copy of the array collapsed into one dimension.

flatiter

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

imag

TrimArray.imag
The imaginary part of the array.

2.1. Install extras 219

formulas Documentation, Release 0.1.4

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

itemsize

TrimArray.itemsize
Length of one array element in bytes.

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

nbytes

TrimArray.nbytes
Total bytes consumed by the elements of the array.

Does not include memory consumed by non-element attributes of the array object.

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

ndim

TrimArray.ndim
Number of array dimensions.

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

real

TrimArray.real
The real part of the array.

220 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

numpy.real : equivalent function

shape

TrimArray.shape
Tuple of array dimensions.

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged

size

TrimArray.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

strides

TrimArray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

2.1. Install extras 221

formulas Documentation, Release 0.1.4

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

numpy.lib.stride_tricks.as_strided

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

Functions

flatten
get_error
is_number
not_implemented
parse_ranges
raise_errors
replace_empty
wrap_func
wrap_ranges_func
wrap_ufunc Helps call a numpy universal function (ufunc).

222 Chapter 2. Installation

formulas Documentation, Release 0.1.4

flatten

flatten(l, check=<function is_number>)

get_error

get_error(*vals)

is_number

is_number(number)

not_implemented

not_implemented(*args, **kwargs)

parse_ranges

parse_ranges(*args, **kw)

raise_errors

raise_errors(*args)

replace_empty

replace_empty(x, empty=0)

wrap_func

wrap_func(func, ranges=False)

wrap_ranges_func

wrap_ranges_func(func, n_out=1)

wrap_ufunc

wrap_ufunc(func, input_parser=<function <lambda>>, check_error=<function get_error>,
args_parser=<function <lambda>>, otype=<function <lambda>>, ranges=False, **kw)

Helps call a numpy universal function (ufunc).

Classes

2.1. Install extras 223

formulas Documentation, Release 0.1.4

Array

Array

class Array

Methods

all Returns True if all elements evaluate to True.
any Returns True if any of the elements of a evaluate to

True.
argmax Return indices of the maximum values along the

given axis.
argmin Return indices of the minimum values along the

given axis of a.
argpartition Returns the indices that would partition this array.
argsort Returns the indices that would sort this array.
astype Copy of the array, cast to a specified type.
byteswap Swap the bytes of the array elements
choose Use an index array to construct a new array from a

set of choices.
clip Return an array whose values are limited to [min,

max].
collapse
compress Return selected slices of this array along given axis.
conj Complex-conjugate all elements.
conjugate Return the complex conjugate, element-wise.
copy Return a copy of the array.
cumprod Return the cumulative product of the elements along

the given axis.
cumsum Return the cumulative sum of the elements along the

given axis.
diagonal Return specified diagonals.
dot Dot product of two arrays.
dump Dump a pickle of the array to the specified file.
dumps Returns the pickle of the array as a string.
fill Fill the array with a scalar value.
flatten Return a copy of the array collapsed into one dimen-

sion.
getfield Returns a field of the given array as a certain type.
item Copy an element of an array to a standard Python

scalar and return it.
itemset Insert scalar into an array (scalar is cast to array’s

dtype, if possible)
max Return the maximum along a given axis.
mean Returns the average of the array elements along

given axis.
min Return the minimum along a given axis.

Continued on next page

224 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Table 70 – continued from previous page
newbyteorder Return the array with the same data viewed with a

different byte order.
nonzero Return the indices of the elements that are non-zero.
partition Rearranges the elements in the array in such a way

that value of the element in kth position is in the po-
sition it would be in a sorted array.

prod Return the product of the array elements over the
given axis

ptp Peak to peak (maximum - minimum) value along a
given axis.

put Set a.flat[n] = values[n] for all n in in-
dices.

ravel Return a flattened array.
repeat Repeat elements of an array.
reshape Returns an array containing the same data with a new

shape.
resize Change shape and size of array in-place.
round Return a with each element rounded to the given

number of decimals.
searchsorted Find indices where elements of v should be inserted

in a to maintain order.
setfield Put a value into a specified place in a field defined by

a data-type.
setflags Set array flags WRITEABLE, ALIGNED, and UP-

DATEIFCOPY, respectively.
sort Sort an array, in-place.
squeeze Remove single-dimensional entries from the shape

of a.
std Returns the standard deviation of the array elements

along given axis.
sum Return the sum of the array elements over the given

axis.
swapaxes Return a view of the array with axis1 and axis2 in-

terchanged.
take Return an array formed from the elements of a at the

given indices.
tobytes Construct Python bytes containing the raw data bytes

in the array.
tofile Write array to a file as text or binary (default).
tolist Return the array as a (possibly nested) list.
tostring Construct Python bytes containing the raw data bytes

in the array.
trace Return the sum along diagonals of the array.
transpose Returns a view of the array with axes transposed.
var Returns the variance of the array elements, along

given axis.
view New view of array with the same data.

all

Array.all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

2.1. Install extras 225

formulas Documentation, Release 0.1.4

Refer to numpy.all for full documentation.

numpy.all : equivalent function

any

Array.any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

numpy.any : equivalent function

argmax

Array.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

numpy.argmax : equivalent function

argmin

Array.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

numpy.argmin : equivalent function

argpartition

Array.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

numpy.argpartition : equivalent function

argsort

Array.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

numpy.argsort : equivalent function

226 Chapter 2. Installation

formulas Documentation, Release 0.1.4

astype

Array.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C order,
‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order
otherwise, and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise the returned
array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is set to false, and
the dtype, order, and subok requirements are satisfied, the input array is returned instead of a copy.

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as the input array,
with dtype, order given by dtype, order.

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

ComplexWarning When casting from complex to float or int. To avoid this, one should use a.real.
astype(t).

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

byteswap

Array.byteswap(inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

inplace [bool, optional] If True, swap bytes in-place, default is False.

2.1. Install extras 227

formulas Documentation, Release 0.1.4

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

choose

Array.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

numpy.choose : equivalent function

clip

Array.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

numpy.clip : equivalent function

collapse

Array.collapse(shape)

compress

Array.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

numpy.compress : equivalent function

conj

Array.conj()
Complex-conjugate all elements.

228 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

conjugate

Array.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

copy

Array.copy(order=’C’)
Return a copy of the array.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout
of a as closely as possible. (Note that this function and :func:numpy.copy are very similar, but have
different default values for their order= arguments.)

numpy.copy numpy.copyto

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

cumprod

Array.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

numpy.cumprod : equivalent function

2.1. Install extras 229

formulas Documentation, Release 0.1.4

cumsum

Array.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

numpy.cumsum : equivalent function

diagonal

Array.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

numpy.diagonal : equivalent function

dot

Array.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

numpy.dot : equivalent function

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],

[2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],

[8., 8.]])

dump

Array.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

file [str] A string naming the dump file.

dumps

Array.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

None

230 Chapter 2. Installation

formulas Documentation, Release 0.1.4

fill

Array.fill(value)
Fill the array with a scalar value.

value [scalar] All elements of a will be assigned this value.

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

flatten

Array.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is
Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the
elements occur in memory. The default is ‘C’.

y [ndarray] A copy of the input array, flattened to one dimension.

ravel : Return a flattened array. flat : A 1-D flat iterator over the array.

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

getfield

Array.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype
fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view
with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger than that of
the array itself.

offset [int] Number of bytes to skip before beginning the element view.

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x

(continues on next page)

2.1. Install extras 231

formulas Documentation, Release 0.1.4

(continued from previous page)

array([[1.+1.j, 0.+0.j],
[0.+0.j, 2.+4.j]])

>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

item

Array.item(*args)
Copy an element of an array to a standard Python scalar and return it.

*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which element
is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which element to
copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument is inter-
preted as an nd-index into the array.

z [Standard Python scalar object] A copy of the specified element of the array as a suitable Python scalar

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

232 Chapter 2. Installation

formulas Documentation, Release 0.1.4

itemset

Array.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two arguments: the
last argument is the value to be set and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

max

Array.max(axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

numpy.amax : equivalent function

mean

Array.mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

numpy.mean : equivalent function

min

Array.min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

numpy.amin : equivalent function

2.1. Install extras 233

formulas Documentation, Release 0.1.4

newbyteorder

Array.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

new_order [string, optional] Byte order to force; a value from the byte order specifications below.
new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-insensitive
check on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’ or
‘biggish’ are valid to specify big-endian.

new_arr [array] New array object with the dtype reflecting given change to the byte order.

nonzero

Array.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

numpy.nonzero : equivalent function

partition

Array.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

kth [int or sequence of ints] Element index to partition by. The kth element value will be in its final
sorted position and all smaller elements will be moved before it and all equal or greater elements
behind it. The order all elements in the partitions is undefined. If provided with a sequence of kth
it will partition all elements indexed by kth of them into their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

234 Chapter 2. Installation

formulas Documentation, Release 0.1.4

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.partition : Return a parititioned copy of an array. argpartition : Indirect partition. sort : Full sort.

See np.partition for notes on the different algorithms.

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

prod

Array.prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

numpy.prod : equivalent function

ptp

Array.ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

numpy.ptp : equivalent function

put

Array.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

numpy.put : equivalent function

ravel

Array.ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

numpy.ravel : equivalent function

ndarray.flat : a flat iterator on the array.

2.1. Install extras 235

formulas Documentation, Release 0.1.4

repeat

Array.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

numpy.repeat : equivalent function

reshape

Array.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

numpy.reshape : equivalent function

resize

Array.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

None

ValueError If a does not own its own data or references or views to it exist, and the data memory must
be changed.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

resize : Return a new array with the specified shape.

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so
if you are sure that you have not shared the memory for this array with another Python object, then you
may safely set refcheck to False.

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and
reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

236 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

round

Array.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

numpy.around : equivalent function

searchsorted

Array.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

numpy.searchsorted : equivalent function

setfield

Array.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

2.1. Install extras 237

formulas Documentation, Release 0.1.4

None

getfield

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

setflags

Array.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the
array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or
is a string. (The exception for string is made so that unpickling can be done without copying memory.)

write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the
compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

(continues on next page)

238 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set UPDATEIFCOPY flag to True

sort

Array.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’}, optional] Sorting algorithm. Default is ‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up in the
dtype, to break ties.

numpy.sort : Return a sorted copy of an array. argsort : Indirect sort. lexsort : Indirect stable sort on
multiple keys. searchsorted : Find elements in sorted array. partition: Partial sort.

See sort for notes on the different sorting algorithms.

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

2.1. Install extras 239

formulas Documentation, Release 0.1.4

squeeze

Array.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

numpy.squeeze : equivalent function

std

Array.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

numpy.std : equivalent function

sum

Array.sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

numpy.sum : equivalent function

swapaxes

Array.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

numpy.swapaxes : equivalent function

take

Array.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

numpy.take : equivalent function

tobytes

Array.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

240 Chapter 2. Installation

formulas Documentation, Release 0.1.4

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

tofile

Array.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

fid [file or str] An open file object, or a string containing a filename.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written, equivalent
to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by first convert-
ing it to the closest Python type, and then using “format” % item.

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

tolist

Array.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

none

y [list] The possibly nested list of array elements.

The array may be recreated, a = np.array(a.tolist()).

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

2.1. Install extras 241

formulas Documentation, Release 0.1.4

tostring

Array.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same
as for the original array.

s [bytes] Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

trace

Array.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

numpy.trace : equivalent function

transpose

Array.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array
into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alterna-
tive to the tuple form)

out [ndarray] View of a, with axes suitably permuted.

ndarray.T : Array property returning the array transposed.

242 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

var

Array.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

numpy.var : equivalent function

view

Array.view(dtype=None, type=None)
New view of array with the same data.

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g., float32
or int16. The default, None, results in the view having the same data-type as a. This argument can
also be specified as an ndarray sub-class, which then specifies the type of the returned object (this
is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the default None
results in type preservation.

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s mem-
ory with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an in-
stance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause
a reinterpretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as
a slice or transpose, etc., the view may give different results.

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

2.1. Install extras 243

formulas Documentation, Release 0.1.4

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

__init__()
Initialize self. See help(type(self)) for accurate signature.

Attributes

244 Chapter 2. Installation

formulas Documentation, Release 0.1.4

T Same as self.transpose(), except that self is returned
if self.ndim < 2.

base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with

the ctypes module.
data Python buffer object pointing to the start of the ar-

ray’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when

traversing an array.

T

Array.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])
>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

base

Array.base
Base object if memory is from some other object.

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

2.1. Install extras 245

formulas Documentation, Release 0.1.4

>>> y = x[2:]
>>> y.base is x
True

ctypes

Array.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

None

c [Python object] Possessing attributes data, shape, strides, etc.

numpy.ctypeslib

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

• data: A pointer to the memory area of the array as a Python integer. This memory area may
contain data that is not aligned, or not in correct byte-order. The memory area may not even be
writeable. The array flags and data-type of this array should be respected when passing this attribute
to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of
this attribute is exactly the same as self._array_interface_[‘data’][0].

• shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

• strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for
the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

• data_as(obj): Return the data pointer cast to a particular c-types object. For ex-
ample, calling self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Per-
haps you want to use the data as a pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

• shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

• strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly.
For example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated before the next Python statement. You
can avoid this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a
reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something
useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will
still have the as parameter attribute which will return an integer equal to the data attribute.

246 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

data

Array.data
Python buffer object pointing to the start of the array’s data.

dtype

Array.dtype
Data-type of the array’s elements.

None

d : numpy dtype object

numpy.dtype

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

flags

Array.flags
Information about the memory layout of the array.

C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.

F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.

OWNDATA (O) The array owns the memory it uses or borrows it from another object.

2.1. Install extras 247

formulas Documentation, Release 0.1.4

WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making it read-
only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a
writeable array may be subsequently locked while the base array remains writeable. (The opposite
is not true, in that a view of a locked array may not be made writeable. However, currently, locking
a base object does not lock any views that already reference it, so under that circumstance it is
possible to alter the contents of a locked array via a previously created writeable view onto it.)
Attempting to change a non-writeable array raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

UPDATEIFCOPY (U) This array is a copy of some other array. When this array is deallocated, the base
array will be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lower-
cased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

• UPDATEIFCOPY can only be set False.

• ALIGNED can only be set True if the data is truly aligned.

• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary
if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that self.
strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0] ==
self.itemsize for Fortran-style contiguous arrays is true.

flat

Array.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

flatten : Return a copy of the array collapsed into one dimension.

flatiter

248 Chapter 2. Installation

formulas Documentation, Release 0.1.4

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

imag

Array.imag
The imaginary part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

itemsize

Array.itemsize
Length of one array element in bytes.

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

nbytes

Array.nbytes
Total bytes consumed by the elements of the array.

Does not include memory consumed by non-element attributes of the array object.

2.1. Install extras 249

formulas Documentation, Release 0.1.4

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

ndim

Array.ndim
Number of array dimensions.

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

real

Array.real
The real part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

numpy.real : equivalent function

shape

Array.shape
Tuple of array dimensions.

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):

(continues on next page)

250 Chapter 2. Installation

formulas Documentation, Release 0.1.4

(continued from previous page)

File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

size

Array.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

strides

Array.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

numpy.lib.stride_tricks.as_strided

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))

(continues on next page)

2.1. Install extras 251

formulas Documentation, Release 0.1.4

(continued from previous page)

>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

numpy.reshape : equivalent function

2.1.7.6 ranges

It provides Ranges class.

Classes

Ranges

Ranges

class Ranges(ranges=(), values=None, is_set=False, all_values=True)

Methods

__init__ Initialize self.
format_range
get_range
push
pushes
set_value
simplify

__init__

Ranges.__init__(ranges=(), values=None, is_set=False, all_values=True)
Initialize self. See help(type(self)) for accurate signature.

252 Chapter 2. Installation

formulas Documentation, Release 0.1.4

format_range

static Ranges.format_range(*args, **kwargs)

get_range

static Ranges.get_range(format_range, ref, context=None)

push

Ranges.push(ref, value=empty, context=None)

pushes

Ranges.pushes(refs, values=(), context=None)

set_value

Ranges.set_value(rng, value=empty)

simplify

Ranges.simplify()

__init__(ranges=(), values=None, is_set=False, all_values=True)
Initialize self. See help(type(self)) for accurate signature.

Attributes

input_fields
value

input_fields

Ranges.input_fields = ('excel', 'sheet', 'n1', 'n2', 'r1', 'r2')

value

Ranges.value

2.1.7.7 cell

It provides Cell class.

2.1. Install extras 253

formulas Documentation, Release 0.1.4

Functions

format_output
wrap_cell_func

format_output

format_output(rng, value)

wrap_cell_func

wrap_cell_func(func, parse_args=<function <lambda>>, parse_kwargs=<function <lambda>>)

Classes

Cell
CellWrapper
RangesAssembler

Cell

class Cell(reference, value, context=None)

Methods

__init__ Initialize self.
add
compile
update_inputs

__init__

Cell.__init__(reference, value, context=None)
Initialize self. See help(type(self)) for accurate signature.

add

Cell.add(dsp, context=None)

compile

Cell.compile(references=None)

254 Chapter 2. Installation

formulas Documentation, Release 0.1.4

update_inputs

Cell.update_inputs(references=None)

__init__(reference, value, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

output

output

Cell.output

CellWrapper

class CellWrapper(func, parse_args, parse_kwargs)

Methods

__init__ Initialize self.
check_cycles

__init__

CellWrapper.__init__(func, parse_args, parse_kwargs)
Initialize self. See help(type(self)) for accurate signature.

check_cycles

CellWrapper.check_cycles(cycle)

__init__(func, parse_args, parse_kwargs)
Initialize self. See help(type(self)) for accurate signature.

RangesAssembler

class RangesAssembler(ref, context=None)

Methods

__init__ Initialize self.
push

2.1. Install extras 255

formulas Documentation, Release 0.1.4

__init__

RangesAssembler.__init__(ref, context=None)
Initialize self. See help(type(self)) for accurate signature.

push

RangesAssembler.push(cell)

__init__(ref, context=None)
Initialize self. See help(type(self)) for accurate signature.

Attributes

output

output

RangesAssembler.output

2.1.7.8 excel

It provides Excel model class.

Classes

ExcelModel

ExcelModel

class ExcelModel

Methods

__init__ Initialize self.
add_book
add_cell
add_sheet
compile
complete
finish
load
loads
push
pushes

Continued on next page

256 Chapter 2. Installation

formulas Documentation, Release 0.1.4

Table 83 – continued from previous page
solve_circular
write

__init__

ExcelModel.__init__()
Initialize self. See help(type(self)) for accurate signature.

add_book

ExcelModel.add_book(book, context=None, data_only=False)

add_cell

ExcelModel.add_cell(cell, context, references=None, formula_references=None, for-
mula_ranges=None, external_links=None)

add_sheet

ExcelModel.add_sheet(worksheet, context)

compile

ExcelModel.compile(inputs, outputs)

complete

ExcelModel.complete()

finish

ExcelModel.finish(complete=True, circular=False)

load

ExcelModel.load(filename)

loads

ExcelModel.loads(*file_names)

push

ExcelModel.push(worksheet, context)

2.1. Install extras 257

formulas Documentation, Release 0.1.4

pushes

ExcelModel.pushes(*worksheets, context=None)

solve_circular

ExcelModel.solve_circular()

write

ExcelModel.write(books=None, solution=None)

__init__()
Initialize self. See help(type(self)) for accurate signature.

compile_class
alias of schedula.utils.dsp.DispatchPipe

2.1.8 Changelog

2.1.8.1 v0.1.4 (2018-10-19)

Fix

• (tokens) #20: Improve Number regex.

2.1.8.2 v0.1.3 (2018-10-09)

Feat

• (excel) #16: Solve circular references.

• (setup): Add donate url.

Fix

• (functions) #18: Enable check_error in IF function just for the first argument.

• (functions) #18: Disable input_parser in IF function to return any type of values.

• (rtd): Define fpath from prj_dir for rtd.

• (rtd): Add missing requirements openpyxl for rtd.

• (setup): Patch to use sphinxcontrib.restbuilder in setup long_description.

258 Chapter 2. Installation

https://github.com/vinci1it2000/formulas/issues/20
https://github.com/vinci1it2000/formulas/issues/16
https://github.com/vinci1it2000/formulas/issues/18
https://github.com/vinci1it2000/formulas/issues/18

formulas Documentation, Release 0.1.4

Other

• Update documentation.

• Replace excel with Excel.

• Create PULL_REQUEST_TEMPLATE.md.

• Update issue templates.

• Update copyright.

• (doc): Update author mail.

2.1.8.3 v0.1.2 (2018-09-12)

Feat

• (functions) #14: Add ROW and COLUMN.

• (cell): Pass cell reference when compiling cell + new function struct with dict to add inputs like CELL.

Fix

• (ranges): Replace system max size with excel max row and col.

• (tokens): Correct number regex.

2.1.8.4 v0.1.1 (2018-09-11)

Feat

• (contrib): Add contribution instructions.

• (setup): Add additional project_urls.

• (setup): Update Development Status to 4 - Beta.

Fix

• (init) #15: Replace FUNCTIONS and OPERATORS objs with get_functions, SUBMODULES.

• (doc): Correct link docs_status.

2.1.8.5 v0.1.0 (2018-07-20)

Feat

• (readme) #6, #7: Add examples.

• (doc): Add changelog.

• (test): Add info of executed test of test_excel_model.

2.1. Install extras 259

https://github.com/vinci1it2000/formulas/issues/14
https://github.com/vinci1it2000/formulas/issues/15
https://github.com/vinci1it2000/formulas/issues/6
https://github.com/vinci1it2000/formulas/issues/7

formulas Documentation, Release 0.1.4

• (functions) #11: Add HEX2OCT, HEX2BIN, HEX2DEC, OCT2HEX, OCT2BIN, OCT2DEC, BIN2HEX,
BIN2OCT, BIN2DEC, DEC2HEX, DEC2OCT, and DEC2BIN functions.

• (setup) #13: Add extras_require to setup file.

Fix

• (excel): Use DispatchPipe to compile a sub model of excel workbook.

• (range) #11: Correct range regex to avoid parsing of function like ranges (e.g., HEX2DEC).

2.1.8.6 v0.0.10 (2018-06-05)

Feat

• (look): Simplify _get_type_id function.

Fix

• (functions): Correct ImportError for FUNCTIONS.

• (operations): Correct behaviour of the basic operations.

2.1.8.7 v0.0.9 (2018-05-28)

Feat

• (excel): Improve performances pre-calculating the range format.

• (core): Improve performances using DispatchPipe instead SubDispatchPipe when compiling formulas.

• (function): Improve performances setting errstate outside vectorization.

• (core): Improve performances of range2parts function (overall 50% faster).

Fix

• (ranges): Minimize conversion str to int and vice versa.

• (functions) #10: Avoid returning shapeless array.

2.1.8.8 v0.0.8 (2018-05-23)

Feat

• (functions): Add MATCH, LOOKUP, HLOOKUP, VLOOKUP functions.

• (excel): Add method to compile ExcelModel.

• (travis): Run coveralls in python 3.6.

• (functions): Add FIND,‘LEFT‘,‘LEN‘,‘LOWER‘,‘MID‘,‘REPLACE‘,‘RIGHT‘,‘TRIM‘, and‘UPPER‘ func-
tions.

260 Chapter 2. Installation

https://github.com/vinci1it2000/formulas/issues/11
https://github.com/vinci1it2000/formulas/issues/13
https://github.com/vinci1it2000/formulas/issues/11
https://github.com/vinci1it2000/formulas/issues/10

formulas Documentation, Release 0.1.4

• (functions): Add IRR function.

• (formulas): Custom reshape to Array class.

• (functions): Add ISO.CEILING, SQRTPI, TRUNC functions.

• (functions): Add ROUND, ROUNDDOWN, ROUNDUP, SEC, SECH, SIGN functions.

• (functions): Add DECIMAL, EVEN, MROUND, ODD, RAND, RANDBETWEEN functions.

• (functions): Add FACT and FACTDOUBLE functions.

• (functions): Add ARABIC and ROMAN functions.

• (functions): Parametrize function wrap_ufunc.

• (functions): Split function raise_errors adding get_error function.

• (ranges): Add custom default and error value for defining ranges Arrays.

• (functions): Add LOG10 function + fix LOG.

• (functions): Add CSC and CSCH functions.

• (functions): Add COT and COTH functions.

• (functions): Add FLOOR, FLOOR.MATH, and FLOOR.PRECISE functions.

• (test): Improve log message of test cell.

Fix

• (rtd): Update installation file for read the docs.

• (functions): Remove unused functions.

• (formulas): Avoid too broad exception.

• (functions.math): Drop scipy dependency for calculate factorial2.

• (functions.logic): Correct error behaviour of if and iferror functions + add BroadcastError.

• (functions.info): Correct behaviour of iserr function.

• (functions): Correct error behaviour of average function.

• (functions): Correct iserror and iserr returning a custom Array.

• (functions): Now xceiling function returns np.nan instead Error.errors[‘#NUM!’].

• (functions): Correct is_number function, now returns False when number is a bool.

• (test): Ensure same order of workbook comparisons.

• (functions): Correct behaviour of min max and int function.

• (ranges): Ensure to have a value with correct shape.

• (parser): Change order of parsing to avoid TRUE and FALSE parsed as ranges or errors as strings.

• (function):Remove unused kwargs n_out.

• (parser): Parse error string as formulas.

• (readme): Remove downloads_count because it is no longer available.

2.1. Install extras 261

formulas Documentation, Release 0.1.4

Other

• Refact: Update Copyright + minor pep.

• Excel returns 1-indexed string positions???

• Added common string functions.

• Merge pull request #9 from ecatkins/irr.

• Implemented IRR function using numpy.

2.1.8.9 v0.0.7 (2017-07-20)

Feat

• (appveyor): Add python 3.6.

• (functions) #4: Add sumproduct function.

Fix

• (install): Force update setuptools>=36.0.1.

• (functions): Correct iserror iserr functions.

• (ranges): Replace ‘#N/A’ with ‘’ as empty value when assemble values.

• (functions) #4: Remove check in ufunc when inputs have different size.

• (functions) #4: Correct power, arctan2, and mod error results.

• (functions) #4: Simplify ufunc code.

• (test) #4: Check that all results are in the output.

• (functions) #4: Correct atan2 argument order.

• (range) #5: Avoid parsing function name as range when it is followed by (.

• (operator) #3: Replace strip with replace.

• (operator) #3: Correct valid operators like ^- or *+.

Other

• Made the ufunc wrapper work with multi input functions, e.g., power, mod, and atan2.

• Created a workbook comparison method in TestExcelModel.

• Added MIN and MAX to the test.xlsx.

• Cleaned up the ufunc wrapper and added min and max to the functions list.

• Relaxed equality in TestExcelModel and made some small fixes to functions.py.

• Added a wrapper for numpy ufuncs, mapped some Excel functions to ufuncs and provided tests.

262 Chapter 2. Installation

https://github.com/vinci1it2000/formulas/issues/9
https://github.com/vinci1it2000/formulas/issues/4
https://github.com/vinci1it2000/formulas/issues/4
https://github.com/vinci1it2000/formulas/issues/4
https://github.com/vinci1it2000/formulas/issues/4
https://github.com/vinci1it2000/formulas/issues/4
https://github.com/vinci1it2000/formulas/issues/4
https://github.com/vinci1it2000/formulas/issues/5
https://github.com/vinci1it2000/formulas/issues/3
https://github.com/vinci1it2000/formulas/issues/3

formulas Documentation, Release 0.1.4

2.1.8.10 v0.0.6 (2017-05-31)

Fix

• (plot): Update schedula to 0.1.12.

• (range): Sheet name without commas has this [^Wd][w.] format.

2.1.8.11 v0.0.5 (2017-05-04)

Fix

• (doc): Update schedula to 0.1.11.

2.1.8.12 v0.0.4 (2017-02-10)

Fix

• (regex): Remove deprecation warnings.

2.1.8.13 v0.0.3 (2017-02-09)

Fix

• (appveyor): Setup of lxml.

• (excel): Remove deprecation warning openpyxl.

• (requirements): Update schedula requirement 0.1.9.

2.1.8.14 v0.0.2 (2017-02-08)

Fix

• (setup): setup fails due to long description.

• (excel): Remove deprecation warning remove_sheet –> remove.

2.1. Install extras 263

formulas Documentation, Release 0.1.4

264 Chapter 2. Installation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

265

formulas Documentation, Release 0.1.4

266 Chapter 3. Indices and tables

Python Module Index

f
formulas, 12
formulas.builder, 14
formulas.cell, 253
formulas.errors, 17
formulas.excel, 256
formulas.functions, 46
formulas.functions.eng, 46
formulas.functions.financial, 46
formulas.functions.info, 47
formulas.functions.logic, 104
formulas.functions.look, 161
formulas.functions.math, 162
formulas.functions.operators, 164
formulas.functions.stat, 193
formulas.functions.text, 193
formulas.parser, 13
formulas.ranges, 252
formulas.tokens, 18
formulas.tokens.function, 18
formulas.tokens.operand, 21
formulas.tokens.operator, 36
formulas.tokens.parenthesis, 43

267

formulas Documentation, Release 0.1.4

268 Python Module Index

Index

Symbols
__init__() (Array method), 19, 244
__init__() (AstBuilder method), 16
__init__() (Cell method), 255
__init__() (CellWrapper method), 255
__init__() (Error method), 23
__init__() (ExcelModel method), 258
__init__() (Function method), 20
__init__() (IfArray method), 125
__init__() (IfErrorArray method), 154
__init__() (Intersect method), 37
__init__() (IsErrArray method), 68
__init__() (IsErrorArray method), 96
__init__() (Number method), 24
__init__() (Operand method), 25
__init__() (Operator method), 39
__init__() (OperatorArray method), 185
__init__() (OperatorToken method), 41
__init__() (Parenthesis method), 44
__init__() (Parser method), 13
__init__() (Range method), 27
__init__() (Ranges method), 253
__init__() (RangesAssembler method), 256
__init__() (Separator method), 42
__init__() (String method), 28
__init__() (Token method), 46
__init__() (TrimArray method), 215
__init__() (XlError method), 36

A
append() (AstBuilder method), 16
Array (class in formulas.functions), 224
Array (class in formulas.tokens.function), 18
ast_builder (Parser attribute), 13
AstBuilder (class in formulas.builder), 14

C
Cell (class in formulas.cell), 254
CellWrapper (class in formulas.cell), 255

compile_class (ExcelModel attribute), 258

E
Error (class in formulas.tokens.operand), 22
ExcelModel (class in formulas.excel), 256

F
fast_range2parts() (in module formulas.tokens.operand),

21
fast_range2parts_v1() (in module formu-

las.tokens.operand), 21
fast_range2parts_v2() (in module formu-

las.tokens.operand), 21
fast_range2parts_v3() (in module formu-

las.tokens.operand), 21
flatten() (in module formulas.functions), 223
format_output() (in module formulas.cell), 254
formulas (module), 12
formulas.builder (module), 14
formulas.cell (module), 253
formulas.errors (module), 17
formulas.excel (module), 256
formulas.functions (module), 46
formulas.functions.eng (module), 46
formulas.functions.financial (module), 46
formulas.functions.info (module), 47
formulas.functions.logic (module), 104
formulas.functions.look (module), 161
formulas.functions.math (module), 162
formulas.functions.operators (module), 164
formulas.functions.stat (module), 193
formulas.functions.text (module), 193
formulas.parser (module), 13
formulas.ranges (module), 252
formulas.tokens (module), 18
formulas.tokens.function (module), 18
formulas.tokens.operand (module), 21
formulas.tokens.operator (module), 36
formulas.tokens.parenthesis (module), 43

269

formulas Documentation, Release 0.1.4

Function (class in formulas.tokens.function), 19

G
get_error() (in module formulas.functions), 223

I
IfArray (class in formulas.functions.logic), 105
IfErrorArray (class in formulas.functions.logic), 133
Intersect (class in formulas.tokens.operator), 36
is_number() (in module formulas.functions), 223
iserr() (in module formulas.functions.info), 47
IsErrArray (class in formulas.functions.info), 47
iserror() (in module formulas.functions.info), 47
IsErrorArray (class in formulas.functions.info), 76

L
logic_input_parser() (in module formu-

las.functions.operators), 164
logic_wrap() (in module formulas.functions.operators),

164

N
not_implemented() (in module formulas.functions), 223
Number (class in formulas.tokens.operand), 23
numeric_wrap() (in module formu-

las.functions.operators), 164

O
Operand (class in formulas.tokens.operand), 25
Operator (class in formulas.tokens.operator), 38
OperatorArray (class in formulas.functions.operators),

165
OperatorToken (class in formulas.tokens.operator), 40

P
Parenthesis (class in formulas.tokens.parenthesis), 43
parse_ranges() (in module formulas.functions), 223
Parser (class in formulas.parser), 13

R
raise_errors() (in module formulas.functions), 223
Range (class in formulas.tokens.operand), 26
range2parts() (in module formulas.tokens.operand), 21
Ranges (class in formulas.ranges), 252
RangesAssembler (class in formulas.cell), 255
replace_empty() (in module formulas.functions), 223
reshape() (Array method), 252

S
Separator (class in formulas.tokens.operator), 41
solve_cycle() (in module formulas.functions.logic), 104
String (class in formulas.tokens.operand), 27

T
Token (class in formulas.tokens), 45
TrimArray (class in formulas.functions.text), 194

W
wrap_cell_func() (in module formulas.cell), 254
wrap_func() (in module formulas.functions), 223
wrap_ranges_func() (in module formulas.functions), 223
wrap_ufunc() (in module formulas.functions), 223

X
xarabic() (in module formulas.functions.math), 162
xarctan2() (in module formulas.functions.math), 162
xaverage() (in module formulas.functions.stat), 193
xceiling() (in module formulas.functions.math), 162
xceiling_math() (in module formulas.functions.math),

162
xcolumn() (in module formulas.functions.look), 161
xcot() (in module formulas.functions.math), 163
xdecimal() (in module formulas.functions.math), 163
xeven() (in module formulas.functions.math), 163
xfact() (in module formulas.functions.math), 163
xfactdouble() (in module formulas.functions.math), 163
xfind() (in module formulas.functions.text), 194
xif() (in module formulas.functions.logic), 104
xiferror() (in module formulas.functions.logic), 104
xiferror_otype() (in module formulas.functions.logic),

104
xirr() (in module formulas.functions.financial), 47
xleft() (in module formulas.functions.text), 194
XlError (class in formulas.tokens.operand), 28
xlookup() (in module formulas.functions.look), 161
xmatch() (in module formulas.functions.look), 161
xmax() (in module formulas.functions.stat), 193
xmid() (in module formulas.functions.text), 194
xmin() (in module formulas.functions.stat), 193
xmod() (in module formulas.functions.math), 163
xmround() (in module formulas.functions.math), 163
xodd() (in module formulas.functions.math), 163
xpower() (in module formulas.functions.math), 163
xrandbetween() (in module formulas.functions.math),

163
xreplace() (in module formulas.functions.text), 194
xright() (in module formulas.functions.text), 194
xroman() (in module formulas.functions.math), 163
xround() (in module formulas.functions.math), 164
xrow() (in module formulas.functions.look), 162
xsrqtpi() (in module formulas.functions.math), 164
xsum() (in module formulas.functions.math), 164
xsumproduct() (in module formulas.functions.math), 164

270 Index

	What is formulas?
	Installation
	Install extras
	What is formulas?
	Installation
	Install extras

	Basic Examples
	Parsing formula
	Excel workbook
	Custom functions

	Next moves
	Contributing to formulas
	Clone the repository
	How to implement a new function
	How to open a pull request

	Donate
	API Reference
	parser
	builder
	errors
	tokens
	functions
	ranges
	cell
	excel

	Changelog
	v0.1.4 (2018-10-19)
	v0.1.3 (2018-10-09)
	v0.1.2 (2018-09-12)
	v0.1.1 (2018-09-11)
	v0.1.0 (2018-07-20)
	v0.0.10 (2018-06-05)
	v0.0.9 (2018-05-28)
	v0.0.8 (2018-05-23)
	v0.0.7 (2017-07-20)
	v0.0.6 (2017-05-31)
	v0.0.5 (2017-05-04)
	v0.0.4 (2017-02-10)
	v0.0.3 (2017-02-09)
	v0.0.2 (2017-02-08)

	Indices and tables
	Python Module Index

